Enhancing Spatial Spread Prediction of Infectious Diseases through Integrating Multi-scale Human Mobility Dynamics

计算机科学 传染病(医学专业) 人口 图形 机动性模型 数据挖掘 疾病 理论计算机科学 分布式计算 医学 环境卫生 病理
作者
Yinzhou Tang,Huandong Wang,Yong Li
标识
DOI:10.1145/3589132.3625586
摘要

With the increasing prevalence of infectious diseases like COVID-19, there is a growing interest in modeling and predicting their transmission. Leveraging the wealth of mobile trajectory data collected through advanced localization and mobile communication techniques, numerous approaches have been proposed to predict the spatial spread of infectious diseases based on human mobility dynamics characterized by microscopic user contact graphs or macroscopic population flow graphs. However, existing pure macroscopic and microscopic models have limitations in terms of modeling capabilities or in protecting user privacy. Thus, in this study, we present a Multi-scale Spatial Disease prediction Network (MSDNet) for predicting the spatial spread of infectious diseases. The model predicts the spread of infectious diseases using a macromicro collaborative approach by combining the temporal and spatial characteristics of the macroscopic information in the population flow graph and the microscopic information in the user contact graph. To understand the coupling between human mobility and infectious disease transmission, we propose a loss term that combines infectious disease spread dynamics and modeling of infectious disease parameters that can achieve stable adaptation to key characteristics of infectious diseases even when human mobility is affected by policy measures such as travel restrictions. Extensive experimental results show the MSDNet model's superiority for epidemic prediction on graph networks using macro-micro collaboration, achieving a 15%-20% improvement in terms of RMSE and a 15%-30% improvement in terms of SMAPE compared to existing baseline models. In addition, we predict infectious disease parameters under changes in human mobility, and the results show that MSDNet could effectively distinguish between human mobility and infectious disease characteristics, achieving a relative improvement of 76% in terms of RMSE and 80% in terms of SMAPE in predicting infectious disease parameters under changes in human mobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宫宛儿完成签到,获得积分10
3秒前
Amelia完成签到,获得积分10
3秒前
5秒前
6秒前
郁离子完成签到,获得积分10
8秒前
晨晨发布了新的文献求助10
10秒前
10秒前
duxiao完成签到 ,获得积分10
10秒前
gxqqqqqqq应助yyyyyy采纳,获得10
11秒前
11秒前
11秒前
11秒前
butaishao完成签到,获得积分10
11秒前
12秒前
22完成签到 ,获得积分10
12秒前
13秒前
14秒前
小马甲应助稳重的若雁采纳,获得10
14秒前
limin完成签到,获得积分10
15秒前
butaishao发布了新的文献求助10
15秒前
曼珠沙华完成签到 ,获得积分10
15秒前
vannie发布了新的文献求助10
17秒前
zhang发布了新的文献求助10
17秒前
Yxqoehtoso发布了新的文献求助10
18秒前
之组长了发布了新的文献求助10
18秒前
18秒前
沉静智宸完成签到,获得积分10
20秒前
熊猫小宇完成签到,获得积分10
22秒前
敖启航发布了新的文献求助10
22秒前
22秒前
Huiiiii发布了新的文献求助10
26秒前
李爱国应助读研头秃采纳,获得10
26秒前
hdc12138完成签到 ,获得积分10
26秒前
杨好圆完成签到,获得积分10
26秒前
sole0627发布了新的文献求助10
27秒前
JamesPei应助yangwang采纳,获得10
29秒前
夜已深完成签到,获得积分10
29秒前
30秒前
万能图书馆应助殷勤柠檬采纳,获得10
33秒前
jinjinshan完成签到,获得积分10
35秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165059
求助须知:如何正确求助?哪些是违规求助? 2816125
关于积分的说明 7911486
捐赠科研通 2475817
什么是DOI,文献DOI怎么找? 1318378
科研通“疑难数据库(出版商)”最低求助积分说明 632116
版权声明 602370