Enhancing Spatial Spread Prediction of Infectious Diseases through Integrating Multi-scale Human Mobility Dynamics

计算机科学 传染病(医学专业) 人口 图形 机动性模型 数据挖掘 疾病 理论计算机科学 分布式计算 医学 环境卫生 病理
作者
Yinzhou Tang,Huandong Wang,Yong Li
标识
DOI:10.1145/3589132.3625586
摘要

With the increasing prevalence of infectious diseases like COVID-19, there is a growing interest in modeling and predicting their transmission. Leveraging the wealth of mobile trajectory data collected through advanced localization and mobile communication techniques, numerous approaches have been proposed to predict the spatial spread of infectious diseases based on human mobility dynamics characterized by microscopic user contact graphs or macroscopic population flow graphs. However, existing pure macroscopic and microscopic models have limitations in terms of modeling capabilities or in protecting user privacy. Thus, in this study, we present a Multi-scale Spatial Disease prediction Network (MSDNet) for predicting the spatial spread of infectious diseases. The model predicts the spread of infectious diseases using a macromicro collaborative approach by combining the temporal and spatial characteristics of the macroscopic information in the population flow graph and the microscopic information in the user contact graph. To understand the coupling between human mobility and infectious disease transmission, we propose a loss term that combines infectious disease spread dynamics and modeling of infectious disease parameters that can achieve stable adaptation to key characteristics of infectious diseases even when human mobility is affected by policy measures such as travel restrictions. Extensive experimental results show the MSDNet model's superiority for epidemic prediction on graph networks using macro-micro collaboration, achieving a 15%-20% improvement in terms of RMSE and a 15%-30% improvement in terms of SMAPE compared to existing baseline models. In addition, we predict infectious disease parameters under changes in human mobility, and the results show that MSDNet could effectively distinguish between human mobility and infectious disease characteristics, achieving a relative improvement of 76% in terms of RMSE and 80% in terms of SMAPE in predicting infectious disease parameters under changes in human mobility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZeSheng完成签到,获得积分10
刚刚
打打应助汤飞柏采纳,获得10
1秒前
1秒前
匆匆而过发布了新的文献求助10
1秒前
1秒前
ximi发布了新的文献求助10
1秒前
2秒前
酷波er应助lzs123采纳,获得10
2秒前
3秒前
科研通AI6应助雪白的傥采纳,获得10
3秒前
3秒前
3秒前
4秒前
JL发布了新的文献求助10
4秒前
lxy发布了新的文献求助30
4秒前
孔凡悦完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
dodoqia发布了新的文献求助10
5秒前
小小阿杰发布了新的文献求助10
5秒前
Margot完成签到,获得积分10
5秒前
贪玩飞珍发布了新的文献求助10
5秒前
6秒前
唐褚发布了新的文献求助10
6秒前
cheng完成签到 ,获得积分10
6秒前
自由发布了新的文献求助10
6秒前
6秒前
森距离完成签到,获得积分10
7秒前
张凌完成签到,获得积分10
7秒前
7秒前
7秒前
黎遥发布了新的文献求助10
8秒前
Akim应助FujiiKaze采纳,获得10
8秒前
化学喵发布了新的文献求助10
9秒前
Owen应助Lee采纳,获得10
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869