Enhancing Spatial Spread Prediction of Infectious Diseases through Integrating Multi-scale Human Mobility Dynamics

计算机科学 传染病(医学专业) 人口 图形 机动性模型 数据挖掘 疾病 理论计算机科学 分布式计算 医学 环境卫生 病理
作者
Yinzhou Tang,Huandong Wang,Yong Li
标识
DOI:10.1145/3589132.3625586
摘要

With the increasing prevalence of infectious diseases like COVID-19, there is a growing interest in modeling and predicting their transmission. Leveraging the wealth of mobile trajectory data collected through advanced localization and mobile communication techniques, numerous approaches have been proposed to predict the spatial spread of infectious diseases based on human mobility dynamics characterized by microscopic user contact graphs or macroscopic population flow graphs. However, existing pure macroscopic and microscopic models have limitations in terms of modeling capabilities or in protecting user privacy. Thus, in this study, we present a Multi-scale Spatial Disease prediction Network (MSDNet) for predicting the spatial spread of infectious diseases. The model predicts the spread of infectious diseases using a macromicro collaborative approach by combining the temporal and spatial characteristics of the macroscopic information in the population flow graph and the microscopic information in the user contact graph. To understand the coupling between human mobility and infectious disease transmission, we propose a loss term that combines infectious disease spread dynamics and modeling of infectious disease parameters that can achieve stable adaptation to key characteristics of infectious diseases even when human mobility is affected by policy measures such as travel restrictions. Extensive experimental results show the MSDNet model's superiority for epidemic prediction on graph networks using macro-micro collaboration, achieving a 15%-20% improvement in terms of RMSE and a 15%-30% improvement in terms of SMAPE compared to existing baseline models. In addition, we predict infectious disease parameters under changes in human mobility, and the results show that MSDNet could effectively distinguish between human mobility and infectious disease characteristics, achieving a relative improvement of 76% in terms of RMSE and 80% in terms of SMAPE in predicting infectious disease parameters under changes in human mobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小晓发布了新的文献求助10
刚刚
wonder123发布了新的文献求助10
2秒前
老实起哞完成签到,获得积分10
2秒前
4秒前
5秒前
gsj发布了新的文献求助10
6秒前
7秒前
所所应助wonder123采纳,获得10
7秒前
8秒前
8秒前
8秒前
田様应助忆茶戏采纳,获得10
8秒前
wss完成签到,获得积分10
9秒前
9秒前
9秒前
song_song发布了新的文献求助10
10秒前
桐桐应助贪玩的野狍子采纳,获得50
10秒前
路小黑发布了新的文献求助10
11秒前
wss发布了新的文献求助10
11秒前
UsihaGuwalgiya完成签到,获得积分10
12秒前
12秒前
13秒前
独特乘云发布了新的文献求助10
13秒前
14秒前
yyyyxxxg完成签到,获得积分10
15秒前
16秒前
健壮的花生zzz完成签到,获得积分10
17秒前
17秒前
Michael-布莱恩特完成签到,获得积分10
18秒前
323431完成签到,获得积分10
19秒前
烟花应助郭小宝采纳,获得10
19秒前
lzx发布了新的文献求助10
20秒前
LJF完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
古月发布了新的文献求助10
21秒前
麦子发布了新的文献求助10
22秒前
传奇3应助孙传彬采纳,获得10
22秒前
所所应助songvv采纳,获得10
23秒前
Chris完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174