MOF Thin Films as Electrochemical Sensor

材料科学 生物分子 制作 纳米技术 电化学 金属有机骨架 电极 电化学气体传感器 生物传感器 化学 有机化学 吸附 医学 病理 物理化学 替代医学
作者
Sanjaya Viraj Bandara,Ishanie Rangeeka Perera
标识
DOI:10.1002/9783527834266.ch10
摘要

Chapter 10 MOF Thin Films as Electrochemical Sensor Sanjaya Viraj Bandara, Sanjaya Viraj Bandara Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, 20400 Sri LankaSearch for more papers by this authorIshanie Rangeeka Perera, Ishanie Rangeeka Perera Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, 20400 Sri LankaSearch for more papers by this author Sanjaya Viraj Bandara, Sanjaya Viraj Bandara Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, 20400 Sri LankaSearch for more papers by this authorIshanie Rangeeka Perera, Ishanie Rangeeka Perera Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, 20400 Sri LankaSearch for more papers by this author Book Editor(s):Sangita Das, Sangita Das Durham University, Stockton Road, Lower Mountjoy, Durham, United KingdomSearch for more papers by this authorSabu Thomas, Sabu Thomas Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, Kerala, IndiaSearch for more papers by this authorPartha Pratim Das, Partha Pratim Das Yonsei University, Yonseiro-50, Seodaemungu, Seoul, KS, South KoreaSearch for more papers by this author First published: 22 December 2023 https://doi.org/10.1002/9783527834266.ch10 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary The field of metal–organic frameworks (MOFs)-based sensors is growing rapidly because of interesting properties owned by MOFs. Since 2013, MOFs-based electrochemical sensors have been developed at an exponential rate. Electrochemical methods integrated with MOF-modified electrodes can be applied to detect a large number of molecules, including heavy metal ions, biomolecules, and even volatile compounds with sufficient sensitivity and selectivity. The fabrication of a good MOF-based electrochemical sensor depends on many factors since every step from the point of synthesis of the MOF to fabricating an electrode for electrochemical detection is critical. The selection of correct electroactive MOF and these electrode fabrication steps also contribute to the performance of the sensor. However, poor electrical conductivity and poor chemical stability of MOFs in solutions are the main challenges to be overcome in the MOF-based electrochemical sensor field. This chapter discusses the fabrication of MOF-based electrodes, various types of MOF composites synthesized to overcome drawbacks associated with MOFs, detection of various types of molecules including heavy metal ions and biomolecules, and finally, challenges associated with MOF-based electrochemical sensors. References Rojas , S. and Horcajada , P. ( 2020 ). Metal–organic frameworks for the removal of emerging organic contaminants in water . Chem. Rev. 120 ( 16 ): 8378 – 8415 . https://doi.org/10.1021/acs.chemrev.9b00797 . 10.1021/acs.chemrev.9b00797 CASPubMedWeb of Science®Google Scholar Islamoglu , T. , Chen , Z. , Wasson , M.C. et al. ( 2020 ). Metal–organic frameworks against toxic chemicals . Chem. Rev. 120 ( 16 ): 8130 – 8160 . https://doi.org/10.1021/acs.chemrev.9b00828 . 10.1021/acs.chemrev.9b00828 CASPubMedWeb of Science®Google Scholar Fan , W. , Yuan , S. , Wang , W. et al. ( 2020 ). Optimizing multivariate metal–organic frameworks for efficient C 2 H 2 /CO 2 separation . J. Am. Chem. Soc. 142 ( 19 ): 8728 – 8737 . https://doi.org/10.1021/jacs.0c00805 . 10.1021/jacs.0c00805 PubMedWeb of Science®Google Scholar Bavykina , A. , Kolobov , N. , Khan , I.S. et al. ( 2020 ). Metal–organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives . Chem. Rev. 120 ( 16 ): 8468 – 8535 . https://doi.org/10.1021/acs.chemrev.9b00685 . 10.1021/acs.chemrev.9b00685 CASPubMedWeb of Science®Google Scholar Muldoon , P.F. , Collet , G. , Eliseeva , S.V. et al. ( 2020 ). Ship-in-a-bottle preparation of long wavelength molecular antennae in lanthanide metal–organic frameworks for biological imaging . J. Am. Chem. Soc. 142 ( 19 ): 8776 – 8781 . https://doi.org/10.1021/jacs.0c01426 . 10.1021/jacs.0c01426 PubMedWeb of Science®Google Scholar Orellana-Tavra , C. , Köppen , M. , Li , A. et al. ( 2020 ). Biocompatible, crystalline, and amorphous bismuth-based metal–organic frameworks for drug delivery . ACS Appl. Mater. Interfaces 12 ( 5 ): 5633 – 5641 . https://doi.org/10.1021/acsami.9b21692 . 10.1021/acsami.9b21692 CASPubMedWeb of Science®Google Scholar Yi , F.Y. , Chen , D. , Wu , M.K. et al. ( 2016 ). Chemical sensors based on metal–organic frameworks . Chempluschem 81 ( 8 ): 675 – 690 . 10.1002/cplu.201600137 CASPubMedWeb of Science®Google Scholar Harzing , A.-W. ( 2021 ). Publish or Perish. Harzin.com Research in International Management. Available at https://harzing.com/resources/publish-or-perish#:~:text=Publish or Perish is a, citations and the h-index. Google Scholar Simões , F.R. and Xavier , M.G. ( 2017 ). Electrochemical sensors . In: Nanoscience and its Applications , 155 – 178 . Elsevier Inc. http://dx.doi.org/10.1016/B978-0-323-49780-0/00006-5 . 10.1016/B978-0-323-49780-0.00006-5 Google Scholar Sun , Z. , Wu , S. , Peng , Y. et al. ( 2021 ). Sensor array for rapid pathogens identification fabricated with peptide-conjugated 2D metal-organic framework nanosheets . Chem. Eng. J. 405 : 126707 . https://doi.org/10.1016/j.cej.2020.126707 . 10.1016/j.cej.2020.126707 CASWeb of Science®Google Scholar Manjavacas , G. and Nieto , B. ( 2016 ). Hydrogen sensors and detectors . In: Compendium of Hydrogen Energy , 215 – 234 . Elsevier Ltd. http://dx.doi.org/10.1016/B978-1-78242-364-5.00010-5 . Google Scholar Turkevych I , Shirakawa N , Fukuda N . Liquid-Phase Molecular-Ionic Layer Deposition of Surface-Supported Metal-Organic Frameworks of Cu3(BTC)2 HKUST-1 for Electrochemical Sensors. ECS Meet Abstr. 2020;MA2020-02(57):3750. http://dx.doi.org/10.1149/MA2020-02573750mtgabs 10.1149/MA2020?02573750mtgabs Google Scholar McCreery , R.L. ( 2008 ). Advanced carbon electrode materials for molecular electrochemistry . Chem. Rev. 108 ( 7 ): 2646 – 2687 . https://doi.org/10.1021/cr068076m . 10.1021/cr068076m CASPubMedWeb of Science®Google Scholar Lu , Z. , Zhao , W. , Wu , L. et al. ( 2021 ). Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead . Sensors Actuators, B Chem. 326 : 128957 . https://doi.org/10.1016/j.snb.2020.128957 . 10.1016/j.snb.2020.128957 CASWeb of Science®Google Scholar Ji , L. , Wang , J. , Wu , K. , and Yang , N. ( 2018 ). Tunable electrochemistry of electrosynthesized copper metal–organic frameworks . Adv. Funct. Mater. 28 ( 13 ): 1 – 8 . 10.1002/adfm.201706961 Web of Science®Google Scholar Wu , L. , Lu , Z. , and Ye , J. ( 2019 ). Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode . Biosens. Bioelectron. 135 ( March ): 45 – 49 . https://doi.org/10.1016/j.bios.2019.03.064 . 10.1016/j.bios.2019.03.064 CASPubMedGoogle Scholar Kaliyaraj Selva Kumar , A. , Zhang , Y. , Li , D. , and Compton , R.G. ( 2020 ). A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 121 ( November ): 106867 . https://doi.org/10.1016/j.elecom.2020.106867 . 10.1016/j.elecom.2020.106867 CASGoogle Scholar Ge , C. , Ramachandran , R. , and Wang , F. ( 2020 ). Ceo2-based two-dimensional layered nanocomposites derived from a metal–organic framework for selective electrochemical dopamine sensors . Sensors (Switzerland) 20 ( 17 ): 1 – 13 . 10.3390/s20174880 Google Scholar Peng , J. , Wei , L. , Liu , Y. et al. ( 2020 ). Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection . RSC Adv. 10 ( 60 ): 36828 – 36835 . 10.1039/D0RA06783K CASPubMedWeb of Science®Google Scholar Hira , S.A. , Nallal , M. , Rajendran , K. et al. ( 2020 ). Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor . Anal. Chim. Acta. 1118 : 26 – 35 . https://doi.org/10.1016/j.aca.2020.04.043 . 10.1016/j.aca.2020.04.043 CASPubMedWeb of Science®Google Scholar Vytr , K. ( 2009 ). Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis . 21 ( 1 ): 7 – 28 . Google Scholar Zaidi , S.A. ( 2013 ). Graphene: a comprehensive review on its utilization in carbon paste electrodes for improved sensor performances . Int. J. Electrochem. Sci. 8 ( 9 ): 11337 – 11355 . CASWeb of Science®Google Scholar Al'Abri , A.M. , Abdul Halim , S.N. , Abu Bakar , N.K. et al. ( 2019 ). Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework . J. Environ. Sci. Health., Part B 54 ( 12 ): 930 – 941 . https://doi.org/10.1080/03601234.2019.1652072 . 10.1080/03601234.2019.1652072 PubMedWeb of Science®Google Scholar Mahmoud , A.M. , Mahnashi , M.H. , and El-Wekil , M.M. ( 2021 ). Indirect differential pulse voltammetric analysis of cyanide at porous copper based metal organic framework modified carbon paste electrode: application to different water samples . Talanta 221 : 121562 . https://doi.org/10.1016/j.talanta.2020.121562 . 10.1016/j.talanta.2020.121562 CASPubMedWeb of Science®Google Scholar Sherino , B. , Mohamad , S. , Abdul Halim , S.N. , and Abdul Manan , N.S. ( 2018 ). Electrochemical detection of hydrogen peroxide on a new microporous Ni–metal organic framework material-carbon paste electrode . Sens. Actuators, B 254 : 1148 – 1156 . https://doi.org/10.1016/j.snb.2017.08.002 . 10.1016/j.snb.2017.08.002 CASWeb of Science®Google Scholar Li , Y. , Li , Y. , Huangfu , C. et al. ( 2013 ). Electrochemical behavior of metal-organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis . J. Electroanal. Chem. 709 : 65 – 69 . http://dx.doi.org/10.1016/j.jelechem.2013.09.017 . 10.1016/j.jelechem.2013.09.017 CASWeb of Science®Google Scholar Topçu , E. ( 2020 ). Three-dimensional, free-standing, and flexible cobalt-based metal-organic frameworks/graphene composite paper: A novel electrochemical sensor for determination of resorcinol , 110629. Mater Res Bull. 121 ( April ): https://doi.org/10.1016/j.materresbull.2019.110629 . 10.1016/j.materresbull.2019.110629 Google Scholar Wei , X. , Guo , J. , Lian , H. et al. ( 2021 ). Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics . Sensors Actuators, B 329 : 129205 . https://www.sciencedirect.com/science/article/pii/S0925400520315458 . 10.1016/j.snb.2020.129205 PubMedWeb of Science®Google Scholar Liu , S. , Lai , C. , Liu , X. et al. ( 2020 ). Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing . Coord. Chem. Rev. 424 : 213520 . https://doi.org/10.1016/j.ccr.2020.213520 . 10.1016/j.ccr.2020.213520 CASWeb of Science®Google Scholar Bao , C. , Niu , Q. , Chen , Z.A. et al. ( 2019 ). Ultrathin nickel-metal-organic framework nanobelt based electrochemical sensor for the determination of urea in human body fluids . RSC Adv. 9 ( 50 ): 29474 – 29481 . 10.1039/C9RA05716A PubMedWeb of Science®Google Scholar Zhou , Y. , Hu , Q. , Yu , F. et al. ( 2020 ). A metal-organic framework based on a nickel bis(dithiolene) connector: synthesis, crystal structure, and application as an electrochemical glucose sensor . J. Am. Chem. Soc. 142 ( 48 ): 20313 – 20317 . 10.1021/jacs.0c09009 CASWeb of Science®Google Scholar Yi , F.Y. , Zhang , R. , Wang , H. et al. ( 2017 ). Metal–organic frameworks and their composites: synthesis and electrochemical applications . Small Methods 1 ( 11 ): 1700187 . 10.1002/smtd.201700187 Web of Science®Google Scholar Anik , Ü. , Timur , S. , and Dursun , Z. ( 2019 ). Metal organic frameworks in electrochemical and optical sensing platforms: a review . Microchim. Acta 186 ( 3 ): 18 – 24 . 10.1007/s00604-019-3321-0 Web of Science®Google Scholar Meng , W. , Wen , Y. , Dai , L. et al. ( 2018 ). A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite . Sensors Actuators, B 260 : 852 – 860 . http://dx.doi.org/10.1016/j.snb.2018.01.109 . 10.1016/j.snb.2018.01.109 CASWeb of Science®Google Scholar Samadi-Maybodi , A. , Ghasemi , S. , and Ghaffari-Rad , H. ( 2015 ). A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine . Sensors Actuators, B 220 : 627 – 633 . http://dx.doi.org/10.1016/j.snb.2015.05.127 . 10.1016/j.snb.2015.05.127 CASWeb of Science®Google Scholar Song , D. , Jiang , X. , Li , Y. et al. ( 2019 ). Metal−organic frameworks-derived MnO 2 /Mn 3 O 4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection . J. Hazard Mater. 373 ( March ): 367 – 376 . https://doi.org/10.1016/j.jhazmat.2019.03.083 . 10.1016/j.jhazmat.2019.03.083 CASPubMedGoogle Scholar Zhang , L. , Ye , C. , Li , X. et al. ( 2018 ). A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor . Nano-Micro Lett. 10 ( 2 ): 1 – 10 . 10.1007/s40820-017-0178-9 PubMedWeb of Science®Google Scholar Yang , J. , Ye , H. , Zhao , F. , and Zeng , B. ( 2016 ). A novel Cu x O nanoparticles@ZIF-8 composite derived from core-shell metal-organic frameworks for highly selective electrochemical sensing of hydrogen peroxide . ACS Appl. Mater. Interfaces 8 ( 31 ): 20407 – 20414 . 10.1021/acsami.6b06436 CASPubMedWeb of Science®Google Scholar Xu , Z. , Yang , L. , and Xu , C. ( 2015 ). Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range . Anal. Chem. 87 ( 6 ): 3438 – 3444 . 10.1021/ac5047278 CASPubMedWeb of Science®Google Scholar Rahman , M.M. , Ara , M.G. , Alim , M.A. et al. ( 2021 ). Mesoporous carbon: a versatile material for scientific applications . Int. J. Mol. Sci. 22 ( 9 ): 4498 . 10.3390/ijms22094498 CASPubMedWeb of Science®Google Scholar Liu , H. , Hassan , M. , Bo , X. , and Guo , L. ( 2019 ). Fumarate-based metal-organic framework/mesoporous carbon as a novel electrochemical sensor for the detection of gallic acid and luteolin . J. Electroanal. Chem. 849 : 113378 . https://doi.org/10.1016/j.jelechem.2019.113378 . 10.1016/j.jelechem.2019.113378 CASWeb of Science®Google Scholar Rawool , C.R. and Srivastava , A.K. ( 2019 ). A dual template imprinted polymer modified electrochemical sensor based on Cu metal organic framework/mesoporous carbon for highly sensitive and selective recognition of rifampicin and isoniazid . Sensors Actuators, B 288 ( January ): 493 – 506 . https://doi.org/10.1016/j.snb.2019.03.032 . 10.1016/j.snb.2019.03.032 CASGoogle Scholar Durgalakshmi D , Rakkesh RA , Mohanraj J . Graphene-metal-organic framework-modified electrochemical sensors . Graphene-Based Electrochemical Sensors for Biomolecules: A Volume in Micro and Nano Technologies . Elsevier ; 2018 . 275 – 296 p. http://dx.doi.org/10.1016/B978-0-12-815394-9.00011-X. Google Scholar Li , J. , Xia , J. , Zhang , F. et al. (s). An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water . Talanta 181 ( December ): 80 – 86 . https://doi.org/10.1016/j.talanta.2018.01.002 . 10.1016/j.talanta.2018.01.002 PubMedGoogle Scholar Nguyen , M.B. , Hong Nhung , V.T. , Thu , V.T. et al. ( 2020 ). An electrochemical sensor based on copper-based metal-organic framework-reduced graphene oxide composites for determination of 2,4-dichlorophenol in water . RSC Adv. 10 ( 69 ): 42212 – 42220 . 10.1039/D0RA06700H CASPubMedWeb of Science®Google Scholar Li , C. , Zhou , Y. , Zhu , X. et al. ( 2018 ). Construction of a sensitive bisphenol A electrochemical sensor based on metal-organic framework/graphene composites . Int. J. Electrochem. Sci. 13 ( 5 ): 4855 – 4867 . 10.20964/2018.05.52 CASWeb of Science®Google Scholar Fang , X. , Chen , X. , Liu , Y. et al. ( 2019 ). Nanocomposites of Zr(IV)-based metal-organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water . ACS Appl. Nano Mater. 2 ( 4 ): 2367 – 2376 . 10.1021/acsanm.9b00243 CASWeb of Science®Google Scholar Yang , Q. , Xu , Q. , Yu , S.H. , and Jiang , H.L. ( 2016 ). Pd nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis . Angew. Chem. Int. Ed. 55 ( 11 ): 3685 – 3689 . 10.1002/anie.201510655 CASPubMedWeb of Science®Google Scholar Chen , Y. , Huang , W. , Chen , K. et al. ( 2019 ). A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: The outstanding analytical performance towards chlorogenic acid . Talanta 196 ( September ): 85 – 91 . https://doi.org/10.1016/j.talanta.2018.12.033 . 10.1016/j.talanta.2018.12.033 CASPubMedGoogle Scholar Zhao , X. , Bai , W. , Yan , Y. et al. ( 2019 ). Core-shell self-doped polyaniline coated metal-organic-framework (SPAN@UIO-66-NH 2 ) screen printed electrochemical sensor for Cd 2+ ions . J. Electrochem. Soc. 166 ( 12 ): B873 – B880 . 10.1149/2.0251912jes CASWeb of Science®Google Scholar Li , H.Y. , Zhao , S.N. , Zang , S.Q. , and Li , J. ( 2020 ). Functional metal-organic frameworks as effective sensors of gases and volatile compounds . Chem. Soc. Rev. 49 ( 17 ): 6364 – 6401 . 10.1039/C9CS00778D CASPubMedWeb of Science®Google Scholar Gassensmith , J.J. , Kim , J.Y. , Holcroft , J.M. et al. ( 2014 ). A metal-organic framework-based material for electrochemical sensing of carbon dioxide . J. Am. Chem. Soc. 136 ( 23 ): 8277 – 8282 . 10.1021/ja5006465 CASPubMedWeb of Science®Google Scholar Ding , R. , Cheong , Y.H. , Ahamed , A. , and Lisak , G. ( 2021 ). Heavy metals detection with paper-based electrochemical sensors . Anal. Chem. 93 ( 4 ): 1880 – 1888 . 10.1021/acs.analchem.0c04247 CASPubMedWeb of Science®Google Scholar Hashemi , F. , Zanganeh , A.R. , Naeimi , F. , and Tayebani , M. ( 2020 ). Fabrication of an electrochemical sensor based on metal-organic framework ZIF-8 for quantitation of silver ions: Optimizing experimental conditions using central composite design (CCD) . Anal. Methods 12 ( 23 ): 3045 – 3055 . 10.1039/D0AY00843E CASPubMedWeb of Science®Google Scholar Zhang , H. , Zhao , M. , and Lin , Y.S. ( 2019 ). Stability of ZIF-8 in water under ambient conditions . Microporous Mesoporous Mater. 279 : 201 – 210 . https://doi.org/10.1016/j.micromeso.2018.12.035 . 10.1016/j.micromeso.2018.12.035 CASWeb of Science®Google Scholar Zhang , Y. , Xie , Z. , Wang , Z. et al. ( 2016 ). Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions . Dalton Trans. 45 ( 32 ): 12653 – 12660 . 10.1039/C6DT01827K CASPubMedWeb of Science®Google Scholar Guntupalli , B. , Liang , P. , Lee , J.-H. et al. ( 2015 ). Ambient filtration method to rapidly prepare highly conductive, paper-based porous gold films for electrochemical biosensing . ACS Appl. Mater. Interfaces 7 ( 49 ): 27049 – 27058 . http://europepmc.org/abstract/MED/26592416 . 10.1021/acsami.5b09612 CASPubMedWeb of Science®Google Scholar Priyadarshini , E. and Pradhan , N. ( 2017 ). Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review . Sensors Actuators, B 238 : 888 – 902 . https://www.sciencedirect.com/science/article/pii/S0925400516309339 . 10.1016/j.snb.2016.06.081 CASWeb of Science®Google Scholar Wang , Y. , Wang , L. , Huang , W. et al. ( 2017 ). A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection . J. Mater. Chem. A 5 ( 18 ): 8385 – 8393 . 10.1039/C7TA01066D CASWeb of Science®Google Scholar Wang , D. , Ke , Y. , Guo , D. et al. ( 2015 ). Facile fabrication of cauliflower-like MIL-100(Cr) and its simultaneous determination of Cd 2+ , Pb 2+ , Cu 2+ and Hg 2+ from aqueous solution . Sensors Actuators, B 216 : 504 – 510 . http://dx.doi.org/10.1016/j.snb.2015.04.054 . 10.1016/j.snb.2015.04.054 CASWeb of Science®Google Scholar Li , Y. , Xia , T. , Zhang , J. et al. ( 2019 ). A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection . J. Solid State Chem. 275 ( February ): 38 – 42 . https://doi.org/10.1016/j.jssc.2019.03.051 . 10.1016/j.jssc.2019.03.051 CASGoogle Scholar Tran , H.V. , Dang , H.T.M. , Tran , L.T. et al. ( 2020 ). Metal-Organic Framework MIL-53(Fe): Synthesis, Electrochemical Characterization, and Application in Development of a Novel and Sensitive Electrochemical Sensor for Detection of Cadmium Ions in Aqueous Solutions . Adv. Polym. Tech. 2020 : 1 – 10 . 10.1155/2020/6279278 Web of Science®Google Scholar Jaishankar , M. , Tseten , T. , Anbalagan , N. et al. ( 2014 ). Toxicity, mechanism and health effects of some heavy metals . Interdiscip. Toxicol. 7 ( 2 ): 60 – 72 . 10.2478/intox-2014-0009 PubMedGoogle Scholar Shellaiah , M. and Sun , K.-W. ( 2021 ). Progress in Metal-Organic Frameworks Facilitated Mercury Detection and Removal . Chemosensors. 9 ( 5 ): 101 . 10.3390/chemosensors9050101 CASWeb of Science®Google Scholar Singh , S. , Numan , A. , Zhan , Y. et al. ( 2020 ). A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework . J. Hazard Mater. 399 ( May ): 123042 . https://doi.org/10.1016/j.jhazmat.2020.123042 . 10.1016/j.jhazmat.2020.123042 CASPubMedGoogle Scholar Zhang , X. , Jiang , Y. , Zhu , M. et al. ( 2020 ). Electrochemical DNA sensor for inorganic mercury(II) ion at attomolar level in dairy product using Cu(II)-anchored metal-organic framework as mimetic catalyst . Chem. Eng. J. 383 ( October ): 123182 . https://doi.org/10.1016/j.cej.2019.123182 . 10.1016/j.cej.2019.123182 CASGoogle Scholar Cui , L. , Wu , J. , and Ju , H. ( 2015 ). Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials . Biosens. Bioelectron. 63 : 276 – 286 . http://dx.doi.org/10.1016/j.bios.2014.07.052 . 10.1016/j.bios.2014.07.052 CASPubMedWeb of Science®Google Scholar Moosavi , S.M. , Nandy , A. , Jablonka , K.M. et al. ( 2020 ). Understanding the diversity of the metal-organic framework ecosystem . Nat. Commun. 11 ( 1 ): 1 – 10 . https://doi.org/10.1038/s41467-020-17755-8 . 10.1038/s41467-020-17755-8 PubMedWeb of Science®Google Scholar Wang , X. , Qi , Y. , Shen , Y. et al. ( 2020 ). A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework . Sensors Actuators, B 310 ( February ): 127756 . https://doi.org/10.1016/j.snb.2020.127756 . 10.1016/j.snb.2020.127756 CASGoogle Scholar Inzucchi , S. , Bergenstal , R. , Fonseca , V. et al. ( 2010 ). Diabetes Care 33 ( Suppl 1 ): S62 – S69 . PubMedGoogle Scholar Lin , X. , Xu , Y. , Pan , X. et al. ( 2020 ). Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025 . Sci Rep. 10 ( 1 ): 1 – 11 . https://doi.org/10.1038/s41598-020-71908-9 . 10.1038/s41598?020?71908?9 PubMedWeb of Science®Google Scholar Park , S. , Boo , H. , and Chung , T.D. ( 2006 ). Electrochemical non-enzymatic glucose sensors . Anal. Chim. Acta 556 ( 1 ): 46 – 57 . 10.1016/j.aca.2005.05.080 CASPubMedWeb of Science®Google Scholar Arif , D. , Hussain , Z. , Sohail , M. et al. ( 2020 ). A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO 2 @ metal-organic framework (ZIF-67) nanocomposite . Front. Chem. 8 ( October ): 1 – 8 . PubMedGoogle Scholar Zhang , L. , Wang , N. , Cao , P. et al. ( 2020 ). Electrochemical non-enzymatic glucose sensor using ionic liquid incorporated cobalt-based metal-organic framework . Microchem. J. 159 ( April ): 105343 . https://doi.org/10.1016/j.microc.2020.105343 . 10.1016/j.microc.2020.105343 CASGoogle Scholar Bacil , R.P. , Chen , L. , Serrano , S.H.P. , and Compton , R.G. ( 2020 ). Dopamine oxidation at gold electrodes: mechanism and kinetics near neutral pH . Phys. Chem. Chem. Phys. 22 ( 2 ): 607 – 614 . 10.1039/C9CP05527D CASPubMedWeb of Science®Google Scholar Hira , S.A. , Nagappan , S. , Annas , D. et al. ( 2021 ). NO2-functionalized metal–organic framework incorporating bimetallic alloy nanoparticles as a sensor for efficient electrochemical detection of dopamine . Electrochem. Commun. 125 : 107012 . https://doi.org/10.1016/j.elecom.2021.107012 . 10.1016/j.elecom.2021.107012 CASWeb of Science®Google Scholar He , D. , Zhou , F. , Sun , L. et al. ( 2020 ). Gold/copper-based metal-organic framework/glassy carbon electrode as high efficient electrochemical sensor for determination of hydrogen peroxide . Int. J. Electrochem. Sci. 15 ( 11 ): 11238 – 11249 . 10.20964/2020.11.04 CASWeb of Science®Google Scholar Salman , F. , Zengin , A. , and Çelik , K.H. ( 2020 ). Synthesis and characterization of Fe 3 O 4 -supported metal–organic framework MIL-101(Fe) for a highly selective and sensitive hydrogen peroxide electrochemical sensor . Ionics 26 ( 10 ): 5221 – 5232 . 10.1007/s11581-020-03601-w CASWeb of Science®Google Scholar Wei , P. , Sun , D. , Niu , Y. et al. ( 2020 ). Enzyme-free electrochemical sensor for the determination of hydrogen peroxide secreted from MCF-7 breast cancer cells using calcined indium metal-organic frameworks as efficient catalysts . Electrochim Acta. 359 : 136962 . https://doi.org/10.1016/j.electacta.2020.136962 . 10.1016/j.electacta.2020.136962 CASWeb of Science®Google Scholar Li , Y. , Ye , W. , Cui , Y. et al. ( 2020 ). A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid . J. Mol. Struct. 1209 : 127986 . https://doi.org/10.1016/j.molstruc.2020.127986 . 10.1016/j.molstruc.2020.127986 CASWeb of Science®Google Scholar Liu , L. , Liu , L. , Wang , Y. , and Ye , B.C. ( 2019 ). A novel electrochemical sensor based on bimetallic metal–organic framework-derived porous carbon for detection of uric acid . Talanta 199 ( February ): 478 – 484 . https://doi.org/10.1016/j.talanta.2019.03.008 . 10.1016/j.talanta.2019.03.008 CASPubMedGoogle Scholar Ling , P. , Lei , J. , Zhang , L. , and Ju , H. ( 2015 ). Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA . Anal. Chem. 87 ( 7 ): 3957 – 3963 . 10.1021/acs.analchem.5b00001 CASPubMedWeb of Science®Google Scholar Shen , W.J. , Zhuo , Y. , Chai , Y.Q. , and Yuan , R. ( 2015 ). Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection . Anal. Chem. 87 ( 22 ): 11345 – 11352 . 10.1021/acs.analchem.5b02694 CASPubMedWeb of Science®Google Scholar Wang , Y. , Hu , Y. , He , Q. et al. ( 2020 ). Metal-organic frameworks for virus detection . Biosens. Bioelectron. 169 : 112604 . https://www.sciencedirect.com/science/article/pii/S0956566320305947 . 10.1016/j.bios.2020.112604 Web of Science®Google Scholar Sun , L. , Hendon , C.H. , Minier , M.A. et al. ( 2015 ). Million-fold electrical conductivity enhancement in Fe 2 (DEBDC) versus Mn 2 (DEBDC) (E = S, O) . J. Am. Chem. Soc. 137 ( 19 ): 6164 – 6167 . 10.1021/jacs.5b02897 CASPubMedWeb of Science®Google Scholar Xie , L.S. , Skorupskii , G. , and Dincaˇ , M. ( 2020 ). Electrically conductive metal-organic frameworks . Chem. Rev. 120 ( 16 ): 8536 – 8580 . 10.1021/acs.chemrev.9b00766 CASPubMedWeb of Science®Google Scholar Yoshida , Y. , Fujie , K. , Lim , D.W. et al. ( 2019 ). Superionic conduction over a wide temperature range in a metal–organic framework impregnated with ionic liquids . Angew. Chem. Int. Ed. 58 ( 32 ): 10909 – 10913 . 10.1002/anie.201903980 CASPubMedWeb of Science®Google Scholar Asadian , E. , Shahrokhian , S. , and Iraji , Z.A. ( 2018 ). Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite . J. Electroanal. Chem. 808 : 114 – 123 . 10.1016/j.jelechem.2017.10.060 CASWeb of Science®Google Scholar Chuang , C.H. and Kung , C.W. ( 2020 ). Metal−organic frameworks toward electrochemical sensors: challenges and opportunities . Electroanalysis 32 ( 9 ): 1885 – 1895 . 10.1002/elan.202060111 CASWeb of Science®Google Scholar Wang , C. , Liu , X. , Keser Demir , N. et al. ( 2016 ). Applications of water stable metal-organic frameworks . Chem. Soc. Rev. 45 ( 18 ): 5107 – 5134 . http://dx.doi.org/10.1039/C6CS00362A . 10.1039/C6CS00362A CASPubMedWeb of Science®Google Scholar Organic and Inorganic Materials Based Sensors ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haofan17完成签到,获得积分10
1秒前
王秋婷发布了新的文献求助10
1秒前
yyqx1128完成签到,获得积分10
1秒前
1秒前
李健应助小超人哈里采纳,获得30
2秒前
wang完成签到 ,获得积分10
2秒前
小明日天发布了新的文献求助10
2秒前
5秒前
赘婿应助刘松采纳,获得10
6秒前
6秒前
酷酷元风完成签到,获得积分10
7秒前
月青悠完成签到,获得积分10
8秒前
小池同学完成签到,获得积分10
8秒前
9秒前
MJQ完成签到,获得积分10
9秒前
小明日天完成签到,获得积分10
9秒前
10秒前
雪白的面包完成签到 ,获得积分10
10秒前
mayberichard发布了新的文献求助10
10秒前
11秒前
章鱼哥完成签到,获得积分10
11秒前
现实马里奥完成签到,获得积分10
11秒前
毛豆应助路宝采纳,获得10
11秒前
12秒前
MJQ发布了新的文献求助10
12秒前
12秒前
wandaiji发布了新的文献求助10
13秒前
哎哟完成签到,获得积分10
13秒前
刘松完成签到,获得积分20
15秒前
畅快香菇发布了新的文献求助10
16秒前
Orange应助王秋婷采纳,获得10
16秒前
外向的跳跳糖完成签到,获得积分10
16秒前
xff完成签到,获得积分10
17秒前
17秒前
17秒前
科研通AI2S应助酷酷的蚂蚁采纳,获得10
17秒前
小蘑菇应助小棠采纳,获得30
18秒前
共享精神应助Moving_Dr采纳,获得10
20秒前
cpli完成签到,获得积分10
22秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304540
求助须知:如何正确求助?哪些是违规求助? 2938522
关于积分的说明 8489066
捐赠科研通 2613005
什么是DOI,文献DOI怎么找? 1427058
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647465