Generative Data Augmentation of Human Biomechanics

计算机科学 生成语法 生物力学 人工智能 计算机视觉 自然语言处理 解剖 医学
作者
Halldór Kárason,Pierluigi Ritrovato,Nicola Maffulli,Francesco Tortorella
出处
期刊:Lecture Notes in Computer Science 卷期号:: 482-493
标识
DOI:10.1007/978-3-031-51023-6_40
摘要

Wearable sensors are miniature and affordable devices used for monitoring human motion in daily life. Data-driven models applied to wearable sensor data can enhance the accuracy of movement analysis outside of controlled settings. However, obtaining a large and representative database for training these models is challenging due to the specialised motion laboratories and expensive equipment required. To address this limitation, this study proposes a data augmentation approach using generative deep learning to enhance biomechanical datasets. A novel conditional generative adversarial network (GAN) was developed to synthesise biomechanical data during gait. The GAN takes into account the subject’s anthropometric measures to generate data that represents specific body types as well as information about the gait cycle for reconstruction back into the time domain. The proposed model was evaluated for generating biomechanical data of unseen subjects and fine-tuning the model with small percentages (1%, 2% and 5%) of the test dataset. Researchers and practitioners can overcome the limitations of obtaining large training datasets from human participants by synthesising realistic and diverse synthetic data. This paper outlines the methodology and experimental setup for developing and evaluating the GAN and discusses its potential impact on the field of biomechanics and human motion analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sutharsons应助科研通管家采纳,获得200
2秒前
打打应助科研通管家采纳,获得10
2秒前
axin应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
lu应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
研友_MLJldZ发布了新的文献求助10
3秒前
wys完成签到 ,获得积分10
4秒前
5秒前
michaelvin完成签到,获得积分10
5秒前
学术大白完成签到 ,获得积分10
8秒前
8秒前
SYT完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
12秒前
13秒前
13秒前
魏伯安发布了新的文献求助10
13秒前
13秒前
zhouleiwang完成签到,获得积分10
14秒前
李爱国应助aiming采纳,获得10
15秒前
无奈傲菡完成签到,获得积分10
16秒前
TT发布了新的文献求助10
16秒前
啦啦啦发布了新的文献求助10
17秒前
sun发布了新的文献求助10
18秒前
荣荣完成签到,获得积分10
18秒前
19秒前
小安完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849