OPTIMISATION OF HYBRID ELECTRIC VEHICLE ENERGY MANAGEMENT USING MACHINE LEARNING

行驶循环 支持向量机 MATLAB语言 电动汽车 计算机科学 能源管理 混合动力汽车 模式(计算机接口) 图形 汽车工程 能量(信号处理) 人工智能 模拟 工程类 功率(物理) 数学 统计 物理 理论计算机科学 量子力学 操作系统
作者
Zainab Asus,Beh Jian Xiang,Zul Hilmi Che Daud
标识
DOI:10.11113/jtse.v10.190
摘要

The focus of the research is on the optimization of the hybrid electric vehicle energy management using machine learning. The objective of this research is to develop the algorithm by using Support Vector Machine (SVM) and to identify the optimal operation mode for SHEV based on the power demand use by using the algorithm. First of all, this research focus on the series hybrid electric vehicle and the vehicle used is an all-terrain vehicle (ATV). Suitable formula will be used to complete the modeling of the vehicle in Energetic Macroscopic Representation (EMR) form and the model constructed by using Matlab Simulink. Then, Support Vector Machine is used to optimize the energy management in the vehicle. The training data from New European Driving Cycle (NEDC) and Worldwide harmonized Light vehicles Test Cycles (WLTC) with 3 classes will put be inside the SVM to undergo training and then the optimal operation modes for each driving cycle will be obtained by using Linear SVM. Then, the obtained results which are the predicted operation mode using the driving cycles and are plotted in the graph. The pattern of the graph is analyzed and then the best predicted operation mode with the highest accuracy among all the driving cycles is chosen. The trained model of the driving cycle with the highest accuracy is used to predict the optimal operation mode for ATV so that to have higher efficiency in energy management by using the Classification Learner inside the Matlab.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
残幻应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得20
1秒前
8R60d8应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
orixero应助野性的沉鱼采纳,获得10
2秒前
oboul完成签到,获得积分10
2秒前
5114发布了新的文献求助10
4秒前
5秒前
尼布丁完成签到,获得积分10
6秒前
yy应助李向东采纳,获得10
6秒前
6秒前
今后应助muzi采纳,获得10
7秒前
8秒前
健忘的金完成签到 ,获得积分10
8秒前
brittany发布了新的文献求助10
9秒前
revive发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
潭潭完成签到,获得积分10
11秒前
qiqi1111发布了新的文献求助10
13秒前
14秒前
14秒前
ch发布了新的文献求助10
14秒前
行毅文完成签到,获得积分10
14秒前
zhj发布了新的文献求助10
15秒前
酷波er应助机智的访云采纳,获得10
16秒前
YilinHou应助糖糖采纳,获得10
16秒前
16秒前
关灯完成签到,获得积分10
17秒前
17秒前
muzi发布了新的文献求助10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427