已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel small object detection algorithm for UAVs based on YOLOv5

计算机科学 目标检测 人工智能 特征(语言学) 计算机视觉 卷积(计算机科学) 对象(语法) 对象类检测 Viola–Jones对象检测框架 模式识别(心理学) 算法 人脸检测 人工神经网络 哲学 语言学 面部识别系统
作者
Jianzhuang Li,Yuechong Zhang,Haiying Liu,Junmei Guo,Lida Liu,Jason Gu,Lixia Deng,Shuang Li
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad2147
摘要

Abstract Due to the advances in deep learning, artificial intelligence is widely utilized. Technologies frontier, including computer vision, represented by object detection, have endowed unmanned aerial vehicles (UAVs) with autonomous perception, analysis, and decision-making capabilities. UAVs extensively utilized in numerous fields including photography, industry and agriculture, surveillance, disaster relief, and play an important role in real life. However, current object detection algorithms encounter challenges when it comes to detecting small objects in images captured by UAVs. The small size of the objects, high density, low resolution, and few features make it difficult for the algorithms to achieve high detection accuracy and are prone to miss and false detections especially when detecting small objects. For the case of enhancing the performance of UAV detection on small objects, a novel small object detection algorithm for UAVs adaptation based on YOLOv5s (UA-YOLOv5s) was proposed. 1) To achieve effective small-sized objects detection and better detection performance, a more accurate small object detection (MASOD) structure was adopted. 2) To boost the detection accuracy and generalization ability of the model, a multi-scale feature fusion (MSF) approach was introduced, which fused the feature information of the shallow layers of the backbone and the neck. 3) Towards enhancing the model stability properties and feature extraction capability, a more efficient and stable convolution residual Squeeze-and-Excitation (CRS)module was introduced. Compared with the YOLOv5s, mAP@0.5 was achieved an impressive improvement of 7.2%. Compared with the YOLOv5l, mAP@0.5 increased by 1.0%, and GFLOPs decreased by 69.1%. Compared to the YOLOv3, mAP@0.5 decreased by 0.2% and GFLOPs by 78.5%. The study's findings demonstrate that the proposed UA-YOLOv5s significantly enhance the object detection performance of UAVs campared to YOLOv5s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aaron_Chia完成签到 ,获得积分10
1秒前
2秒前
2秒前
杨小羊的羊完成签到 ,获得积分10
3秒前
峰feng完成签到,获得积分10
4秒前
xxx完成签到 ,获得积分10
4秒前
5秒前
Martin完成签到 ,获得积分10
5秒前
6秒前
8秒前
杀鱼不眨眼完成签到 ,获得积分10
9秒前
魏则一发布了新的文献求助10
9秒前
10秒前
10秒前
弃医遛鸟登高而歌完成签到 ,获得积分10
11秒前
11秒前
无奈以南完成签到 ,获得积分10
11秒前
吉吉完成签到 ,获得积分10
12秒前
13秒前
Pharmer发布了新的文献求助10
14秒前
guolina完成签到 ,获得积分10
14秒前
雷锋完成签到 ,获得积分10
14秒前
duwurong发布了新的文献求助10
15秒前
16秒前
17秒前
21秒前
25秒前
26秒前
残月下的樱花完成签到,获得积分10
27秒前
njc发布了新的文献求助10
27秒前
玥月发布了新的文献求助10
29秒前
容止发布了新的文献求助10
29秒前
虚幻又莲完成签到,获得积分10
29秒前
danbom发布了新的文献求助10
30秒前
欣慰蚂蚁完成签到,获得积分10
30秒前
yy完成签到 ,获得积分10
33秒前
njc完成签到,获得积分10
38秒前
顾难摧完成签到 ,获得积分10
38秒前
Winner完成签到,获得积分10
41秒前
小熊妮子爱喝草莓乌龙茶完成签到 ,获得积分10
48秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801716
关于积分的说明 7845638
捐赠科研通 2459139
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727