Exploring the Potential of Deep Reinforcement Learning for Autonomous Navigation in Complex Environments

强化学习 计算机科学 人工智能 人机交互
作者
Venkata Raghuveer Burugadda,Nitin Jadhav,Narayan Vyas,Ronak Duggar
标识
DOI:10.1109/iccubea58933.2023.10392109
摘要

One of the most challenging problems in robotics and autonomous vehicles is autonomous navigation in complex and dynamic environments. Deep Reinforcement Learning (DRL), which enables agents to learn complicated behaviors autonomously through trial and error, has demonstrated that it has the potential to be an effective solution to this problem. By utilizing the Waymo open dataset and the Proximal Policy Optimisation (PPO) algorithm, this research paper aims to investigate the potential of DRL for autonomous navigation in complex environments. In the first step of this process, we conduct a literature review that focuses on numerous research that has studied the application of DRL for autonomous navigation in various settings. After that, we discuss our methodology, which entails utilizing PPO to instruct an agent navigating the Waymo dataset. According to the findings of our study, the trained agent can properly navigate through the environment, even when barriers and other dynamic elements are present. In addition, we assess our agent's performance using various criteria, such as the percentage of successful attempts, efficiency, and risk. According to our research's conclusions, DRL-based navigation systems have the potential to create genuinely autonomous systems that can navigate across surroundings that are both complicated and dynamic. In general, the findings of this study demonstrate how important it is to investigate the possibilities of DRL to find solutions to complex problems in the fields of robotics and autonomous cars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
木叶完成签到 ,获得积分10
3秒前
111发布了新的文献求助10
4秒前
铭铭铭发布了新的文献求助10
5秒前
6秒前
8秒前
9秒前
10秒前
小夹子关注了科研通微信公众号
12秒前
13秒前
铭铭铭完成签到,获得积分10
13秒前
13秒前
蓝色刀锋完成签到,获得积分10
15秒前
英姑应助开朗的又亦采纳,获得10
19秒前
20秒前
你快睡吧发布了新的文献求助10
20秒前
22秒前
23秒前
脑洞疼应助流流采纳,获得10
24秒前
杨凡发布了新的文献求助10
26秒前
111完成签到,获得积分10
27秒前
27秒前
28秒前
KK完成签到 ,获得积分10
29秒前
30秒前
上官若男应助尧思瑶采纳,获得10
31秒前
32秒前
王宝钏发布了新的文献求助10
33秒前
33秒前
chaowandou完成签到,获得积分10
34秒前
小夹子完成签到,获得积分10
35秒前
舒适的随阴关注了科研通微信公众号
35秒前
35秒前
36秒前
科研狗不理完成签到,获得积分10
37秒前
37秒前
shirely完成签到,获得积分10
39秒前
结实的啤酒完成签到 ,获得积分10
40秒前
谢晋发布了新的文献求助30
40秒前
Jennie发布了新的文献求助10
40秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462725
求助须知:如何正确求助?哪些是违规求助? 3056239
关于积分的说明 9051164
捐赠科研通 2745868
什么是DOI,文献DOI怎么找? 1506668
科研通“疑难数据库(出版商)”最低求助积分说明 696188
邀请新用户注册赠送积分活动 695720