Exploring the Potential of Deep Reinforcement Learning for Autonomous Navigation in Complex Environments

强化学习 计算机科学 人工智能 人机交互
作者
Venkata Raghuveer Burugadda,Nitin Jadhav,Narayan Vyas,Ronak Duggar
标识
DOI:10.1109/iccubea58933.2023.10392109
摘要

One of the most challenging problems in robotics and autonomous vehicles is autonomous navigation in complex and dynamic environments. Deep Reinforcement Learning (DRL), which enables agents to learn complicated behaviors autonomously through trial and error, has demonstrated that it has the potential to be an effective solution to this problem. By utilizing the Waymo open dataset and the Proximal Policy Optimisation (PPO) algorithm, this research paper aims to investigate the potential of DRL for autonomous navigation in complex environments. In the first step of this process, we conduct a literature review that focuses on numerous research that has studied the application of DRL for autonomous navigation in various settings. After that, we discuss our methodology, which entails utilizing PPO to instruct an agent navigating the Waymo dataset. According to the findings of our study, the trained agent can properly navigate through the environment, even when barriers and other dynamic elements are present. In addition, we assess our agent's performance using various criteria, such as the percentage of successful attempts, efficiency, and risk. According to our research's conclusions, DRL-based navigation systems have the potential to create genuinely autonomous systems that can navigate across surroundings that are both complicated and dynamic. In general, the findings of this study demonstrate how important it is to investigate the possibilities of DRL to find solutions to complex problems in the fields of robotics and autonomous cars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃苹果和香蕉完成签到,获得积分10
刚刚
小刘完成签到 ,获得积分10
刚刚
2秒前
2秒前
汪咏发布了新的文献求助10
4秒前
跳跃的安雁完成签到 ,获得积分10
4秒前
ajun发布了新的文献求助10
5秒前
5秒前
阿莹完成签到,获得积分10
6秒前
6秒前
所所应助木易光军采纳,获得10
6秒前
7秒前
斯文初翠完成签到 ,获得积分10
7秒前
甜美的尔岚完成签到 ,获得积分10
7秒前
8秒前
8秒前
Eternal完成签到 ,获得积分10
8秒前
wt发布了新的文献求助20
10秒前
rosyw发布了新的文献求助10
10秒前
霸气的小土豆完成签到 ,获得积分10
10秒前
王缪芸发布了新的文献求助10
11秒前
lll完成签到 ,获得积分10
11秒前
蒲琪完成签到,获得积分10
11秒前
ningwu发布了新的文献求助10
12秒前
梁小雨完成签到 ,获得积分10
12秒前
万能图书馆应助DavidShaw采纳,获得10
13秒前
是danoo发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助30
17秒前
活力妙芙完成签到 ,获得积分10
17秒前
serapy完成签到,获得积分10
17秒前
18秒前
大个应助焦恩俊采纳,获得10
19秒前
酷波er应助执着皮皮虾采纳,获得10
19秒前
小叶子发布了新的文献求助10
19秒前
19秒前
大个应助liuliu采纳,获得10
20秒前
20秒前
11完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920