已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiology weather forecast: A retrospective analysis of predictability of median daily polytrauma-CT occurrence based on weather data

多发伤 医学 逻辑回归 随机森林 急诊分诊台 机器学习 气象学 人工智能 急诊医学 内科学 计算机科学 物理
作者
Martin Segeroth,Jan Vosshenrich,Hanns‐Christian Breit,Jakob Wasserthal,Tobias Heye
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:170: 111269-111269
标识
DOI:10.1016/j.ejrad.2023.111269
摘要

Resource planning is a crucial component in hospitals, particularly in radiology departments. Since weather conditions are often described to correlate with emergency room visits, we aimed to forecast the amount of polytrauma-CTs using weather information.All polytrauma-CTs between 01/01/2011 and 12/31/2022 (n = 6638) were retrieved from the radiology information system. Local weather data was downloaded from meteoblue.com. The data was normalized and smoothened. Daily polytrauma-CT occurrence was stratified into below median and above median number of daily polytrauma-CTs. Logistic regression and machine learning algorithms (neural network, random forest classifier, support vector machine, gradient boosting classifier) were employed as prediction models. Data from 2012 to 2020 was used for training, data from 2021 to 2022 for validation.More polytrauma-CTs were acquired in summer compared with winter months, demonstrating a seasonal change (median: 2.35; IQR 1.60-3.22 vs. 2.08; IQR 1.36-3.03; p <.001). Temperature (rs = 0.45), sunshine duration (rs = 0.38) and ultraviolet light amount (rs = 0.37) correlated positively, wind velocity (rs = -0.57) and cloudiness (rs = -0.28) correlated negatively with polytrauma-CT occurrence (all p <.001). The logistic regression model for identification of days with above median number of polytrauma-CTs achieved an accuracy of 87 % on training data from 2011 to 2020. When forecasting the years 2021-2022 an accuracy of 65 % was achieved. A neural network and a support vector machine both achieved a validation accuracy of 72 %, whereas all classifiers regarded wind velocity and ultraviolet light amount as the most important parameters.It is possible to forecast above or below median daily number of polytrauma-CTs using weather data.Prediction of polytrauma-CT examination volumes may be used to improve resource planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汤万天完成签到,获得积分10
5秒前
饶清萍发布了新的文献求助10
5秒前
lanrete发布了新的文献求助10
6秒前
顾矜应助舒适访风采纳,获得10
7秒前
顺心乐曲完成签到,获得积分10
11秒前
zdyfychenyan完成签到 ,获得积分10
11秒前
找文献完成签到 ,获得积分10
14秒前
柿饼完成签到,获得积分10
15秒前
lanrete完成签到,获得积分10
16秒前
李爱国应助薄荷味汽水采纳,获得10
16秒前
厚朴大师完成签到,获得积分10
17秒前
domingo完成签到,获得积分10
20秒前
22秒前
忧虑的向日葵完成签到,获得积分10
24秒前
HJJHJH完成签到,获得积分10
24秒前
HJJHJH发布了新的文献求助10
27秒前
29秒前
32秒前
古人发布了新的文献求助10
33秒前
35秒前
秋蚓完成签到 ,获得积分10
35秒前
37秒前
橙子完成签到 ,获得积分10
37秒前
38秒前
LP829发布了新的文献求助10
39秒前
天天快乐应助Desserts采纳,获得10
41秒前
槐序深巷完成签到 ,获得积分20
42秒前
43秒前
44秒前
COSMAO完成签到,获得积分0
44秒前
小洋甘完成签到,获得积分10
46秒前
48秒前
自然的衫完成签到 ,获得积分10
50秒前
hrs完成签到 ,获得积分10
54秒前
研友_alzhgo发布了新的文献求助10
55秒前
笑对人生完成签到 ,获得积分10
59秒前
wlp鹏完成签到,获得积分10
59秒前
霉头脑完成签到 ,获得积分10
59秒前
独特瑾瑜完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610454
求助须知:如何正确求助?哪些是违规求助? 4016392
关于积分的说明 12435104
捐赠科研通 3697960
什么是DOI,文献DOI怎么找? 2039151
邀请新用户注册赠送积分活动 1072032
科研通“疑难数据库(出版商)”最低求助积分说明 955685