Radiology weather forecast: A retrospective analysis of predictability of median daily polytrauma-CT occurrence based on weather data

多发伤 医学 逻辑回归 随机森林 急诊分诊台 机器学习 气象学 人工智能 急诊医学 内科学 计算机科学 物理
作者
Martin Segeroth,Jan Vosshenrich,Hanns‐Christian Breit,Jakob Wasserthal,Tobias Heye
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:170: 111269-111269
标识
DOI:10.1016/j.ejrad.2023.111269
摘要

Resource planning is a crucial component in hospitals, particularly in radiology departments. Since weather conditions are often described to correlate with emergency room visits, we aimed to forecast the amount of polytrauma-CTs using weather information.All polytrauma-CTs between 01/01/2011 and 12/31/2022 (n = 6638) were retrieved from the radiology information system. Local weather data was downloaded from meteoblue.com. The data was normalized and smoothened. Daily polytrauma-CT occurrence was stratified into below median and above median number of daily polytrauma-CTs. Logistic regression and machine learning algorithms (neural network, random forest classifier, support vector machine, gradient boosting classifier) were employed as prediction models. Data from 2012 to 2020 was used for training, data from 2021 to 2022 for validation.More polytrauma-CTs were acquired in summer compared with winter months, demonstrating a seasonal change (median: 2.35; IQR 1.60-3.22 vs. 2.08; IQR 1.36-3.03; p <.001). Temperature (rs = 0.45), sunshine duration (rs = 0.38) and ultraviolet light amount (rs = 0.37) correlated positively, wind velocity (rs = -0.57) and cloudiness (rs = -0.28) correlated negatively with polytrauma-CT occurrence (all p <.001). The logistic regression model for identification of days with above median number of polytrauma-CTs achieved an accuracy of 87 % on training data from 2011 to 2020. When forecasting the years 2021-2022 an accuracy of 65 % was achieved. A neural network and a support vector machine both achieved a validation accuracy of 72 %, whereas all classifiers regarded wind velocity and ultraviolet light amount as the most important parameters.It is possible to forecast above or below median daily number of polytrauma-CTs using weather data.Prediction of polytrauma-CT examination volumes may be used to improve resource planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助JieYin采纳,获得10
1秒前
朝阳区李知恩应助zhong采纳,获得20
1秒前
2秒前
4秒前
LL发布了新的文献求助10
4秒前
wanci应助幼汁汁鬼鬼采纳,获得10
5秒前
6秒前
6秒前
8秒前
wildeager完成签到,获得积分10
9秒前
9秒前
NexusExplorer应助自然安雁采纳,获得10
9秒前
木子完成签到,获得积分10
9秒前
姚姚完成签到,获得积分20
10秒前
11秒前
AAAaa发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
浮游应助niuniujia采纳,获得10
13秒前
dz发布了新的文献求助10
13秒前
浮游应助mmyhn采纳,获得10
14秒前
李爱国应助YQT采纳,获得30
14秒前
Yonina发布了新的文献求助10
15秒前
负责丹亦完成签到,获得积分10
15秒前
iebix发布了新的文献求助20
16秒前
猪头发布了新的文献求助10
17秒前
17秒前
科目三应助大聪明采纳,获得10
18秒前
19秒前
19秒前
yk完成签到,获得积分10
19秒前
20秒前
20秒前
没有你沉完成签到,获得积分20
21秒前
小欣完成签到,获得积分10
22秒前
水滴发布了新的文献求助10
22秒前
NexusExplorer应助零九二一采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Nonthermal Processing Technologies for Food 800
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4987839
求助须知:如何正确求助?哪些是违规求助? 4237472
关于积分的说明 13199138
捐赠科研通 4031234
什么是DOI,文献DOI怎么找? 2205379
邀请新用户注册赠送积分活动 1216944
关于科研通互助平台的介绍 1134978