Radiology weather forecast: A retrospective analysis of predictability of median daily polytrauma-CT occurrence based on weather data

多发伤 医学 逻辑回归 随机森林 急诊分诊台 机器学习 气象学 人工智能 急诊医学 内科学 计算机科学 物理
作者
Martin Segeroth,Jan Vosshenrich,Hanns‐Christian Breit,Jakob Wasserthal,Tobias Heye
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:170: 111269-111269
标识
DOI:10.1016/j.ejrad.2023.111269
摘要

Resource planning is a crucial component in hospitals, particularly in radiology departments. Since weather conditions are often described to correlate with emergency room visits, we aimed to forecast the amount of polytrauma-CTs using weather information.All polytrauma-CTs between 01/01/2011 and 12/31/2022 (n = 6638) were retrieved from the radiology information system. Local weather data was downloaded from meteoblue.com. The data was normalized and smoothened. Daily polytrauma-CT occurrence was stratified into below median and above median number of daily polytrauma-CTs. Logistic regression and machine learning algorithms (neural network, random forest classifier, support vector machine, gradient boosting classifier) were employed as prediction models. Data from 2012 to 2020 was used for training, data from 2021 to 2022 for validation.More polytrauma-CTs were acquired in summer compared with winter months, demonstrating a seasonal change (median: 2.35; IQR 1.60-3.22 vs. 2.08; IQR 1.36-3.03; p <.001). Temperature (rs = 0.45), sunshine duration (rs = 0.38) and ultraviolet light amount (rs = 0.37) correlated positively, wind velocity (rs = -0.57) and cloudiness (rs = -0.28) correlated negatively with polytrauma-CT occurrence (all p <.001). The logistic regression model for identification of days with above median number of polytrauma-CTs achieved an accuracy of 87 % on training data from 2011 to 2020. When forecasting the years 2021-2022 an accuracy of 65 % was achieved. A neural network and a support vector machine both achieved a validation accuracy of 72 %, whereas all classifiers regarded wind velocity and ultraviolet light amount as the most important parameters.It is possible to forecast above or below median daily number of polytrauma-CTs using weather data.Prediction of polytrauma-CT examination volumes may be used to improve resource planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
务实的唇膏完成签到,获得积分10
1秒前
Will完成签到,获得积分10
1秒前
1秒前
Micky完成签到,获得积分10
1秒前
ape发布了新的文献求助10
1秒前
十七发布了新的文献求助10
2秒前
gyt发布了新的文献求助10
2秒前
时尚战斗机完成签到,获得积分10
2秒前
2秒前
华安发布了新的文献求助30
3秒前
3秒前
迟大猫应助dpp采纳,获得10
3秒前
4秒前
astral完成签到,获得积分10
4秒前
科研通AI5应助HJJHJH采纳,获得30
5秒前
Isabel发布了新的文献求助10
5秒前
5秒前
桑姊发布了新的文献求助10
6秒前
6秒前
Cyrus2022完成签到,获得积分10
6秒前
古哉完成签到,获得积分10
6秒前
xiachengcs发布了新的文献求助30
7秒前
炙热芝发布了新的文献求助30
7秒前
Rain完成签到,获得积分10
7秒前
高大的战斗机完成签到,获得积分10
7秒前
26347完成签到 ,获得积分10
7秒前
131343发布了新的文献求助10
7秒前
HZHZ完成签到,获得积分10
7秒前
沈海完成签到,获得积分10
8秒前
8秒前
smartbot发布了新的文献求助20
8秒前
new_vision发布了新的文献求助10
8秒前
英姑应助挽歌采纳,获得10
8秒前
自信富发布了新的文献求助10
9秒前
9秒前
10秒前
NexusExplorer应助包容的幻梅采纳,获得30
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762