Radiology weather forecast: A retrospective analysis of predictability of median daily polytrauma-CT occurrence based on weather data

多发伤 医学 逻辑回归 随机森林 急诊分诊台 机器学习 气象学 人工智能 急诊医学 内科学 计算机科学 物理
作者
Martin Segeroth,Jan Vosshenrich,Hanns‐Christian Breit,Jakob Wasserthal,Tobias Heye
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:170: 111269-111269
标识
DOI:10.1016/j.ejrad.2023.111269
摘要

Resource planning is a crucial component in hospitals, particularly in radiology departments. Since weather conditions are often described to correlate with emergency room visits, we aimed to forecast the amount of polytrauma-CTs using weather information.All polytrauma-CTs between 01/01/2011 and 12/31/2022 (n = 6638) were retrieved from the radiology information system. Local weather data was downloaded from meteoblue.com. The data was normalized and smoothened. Daily polytrauma-CT occurrence was stratified into below median and above median number of daily polytrauma-CTs. Logistic regression and machine learning algorithms (neural network, random forest classifier, support vector machine, gradient boosting classifier) were employed as prediction models. Data from 2012 to 2020 was used for training, data from 2021 to 2022 for validation.More polytrauma-CTs were acquired in summer compared with winter months, demonstrating a seasonal change (median: 2.35; IQR 1.60-3.22 vs. 2.08; IQR 1.36-3.03; p <.001). Temperature (rs = 0.45), sunshine duration (rs = 0.38) and ultraviolet light amount (rs = 0.37) correlated positively, wind velocity (rs = -0.57) and cloudiness (rs = -0.28) correlated negatively with polytrauma-CT occurrence (all p <.001). The logistic regression model for identification of days with above median number of polytrauma-CTs achieved an accuracy of 87 % on training data from 2011 to 2020. When forecasting the years 2021-2022 an accuracy of 65 % was achieved. A neural network and a support vector machine both achieved a validation accuracy of 72 %, whereas all classifiers regarded wind velocity and ultraviolet light amount as the most important parameters.It is possible to forecast above or below median daily number of polytrauma-CTs using weather data.Prediction of polytrauma-CT examination volumes may be used to improve resource planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助发的不太好采纳,获得10
1秒前
离枝完成签到,获得积分10
3秒前
Johnlei完成签到,获得积分10
3秒前
3秒前
OrangeWang完成签到,获得积分10
3秒前
Rondab应助myy采纳,获得10
3秒前
wenwen完成签到,获得积分10
4秒前
Yang完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
6秒前
离枝发布了新的文献求助30
7秒前
ED应助Johnlei采纳,获得10
7秒前
荧123456发布了新的文献求助10
8秒前
8秒前
田様应助何佳采纳,获得10
9秒前
9秒前
9秒前
9秒前
qingsyxuan完成签到,获得积分10
10秒前
huoxukeyi0718完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
wzx发布了新的文献求助10
11秒前
XQJ发布了新的文献求助10
11秒前
烤冷面发布了新的文献求助10
11秒前
jason完成签到 ,获得积分10
11秒前
脑洞疼应助兰天采纳,获得10
11秒前
zfh发布了新的文献求助10
12秒前
12秒前
聪聪great完成签到,获得积分20
12秒前
12秒前
13秒前
WD发布了新的文献求助10
13秒前
14秒前
研友_VZG7GZ应助摩登兄弟采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459