棱锥(几何)
计算机科学
背景(考古学)
人工智能
特征(语言学)
增采样
保险丝(电气)
语义学(计算机科学)
模式识别(心理学)
代表(政治)
特征提取
计算机视觉
图像(数学)
数学
工程类
古生物学
语言学
哲学
几何学
政治
法学
政治学
生物
程序设计语言
电气工程
作者
Tianfang Zhang,Lei Li,Siying Cao,Tian Pu,Zhenming Peng
标识
DOI:10.1109/taes.2023.3238703
摘要
Infrared small target detection techniques remain a challenging task due to the complex background. To overcome this problem, by exploring context information, this research presents a data-driven approach called attention-guided pyramid context network (AGPCNet). Specifically, we design attention-guided context block and perceive pixel correlations within and between patches at specific scales via local semantic association and global context attention, respectively. Then, the contextual information from multiple scales is fused by context pyramid module to achieve better feature representation. In the upsampling stage, we fuse the low and deep semantics through asymmetric fusion module to retain more information about small targets. The experimental results illustrate that AGPCNet has achieved state-of-the-art performance on three available infrared small target datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI