A Context-Aware Multi-Event Identification Method for Nonintrusive Load Monitoring

滑动窗口协议 事件(粒子物理) 计算机科学 背景(考古学) 鉴定(生物学) 数据挖掘 智能电网 多样性(控制论) 窗口(计算) 人工智能 机器学习 模式识别(心理学) 工程类 古生物学 物理 植物 量子力学 操作系统 电气工程 生物
作者
Runhai Jiao,Chengyang Li,Gangyi Xun,Tianle Zhang,Brij B. Gupta,Guangwei Yan
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 194-204 被引量:12
标识
DOI:10.1109/tce.2023.3236452
摘要

Non-intrusive load monitoring (NILM) is a method that provides appliance power consumption information, which will help enhance the smart grid applications. This paper proposes an end-to-end NILM method for multi-event identification, which alleviates the challenges of setting hyper-parameters and detecting multiple events in traditional methods. In this paper, convolutional neural networks are used to extract the local features of target event from the aggregated data in the sliding window. Then, the multi-head self-attention mechanism is introduced to extract the correlation between the sequence of events in the window, and the contextual information is fully used to distinguish similar events. Finally, a multi-scale anchor detection framework is introduced to identify multiple events in the window. In addition, this paper also proposes a novel data augmentation method to resolve the problem of insufficient event samples in the dataset to support model training. Comparative experiments were performed on two public datasets (REDD and UKDALE) with a variety of recently proposed methods in this paper to demonstrate the effectiveness and superiority of our method. The proposed method here achieved an average $F_{1}$ score of 0.96 for multiple appliances of different power levels, which was 30% higher than that achieved by other compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助TNNzuan采纳,获得10
刚刚
清新发布了新的文献求助10
刚刚
1秒前
小马甲应助hyscoll采纳,获得10
2秒前
天天快乐应助哈哈镜阿姐采纳,获得10
3秒前
咕噜完成签到 ,获得积分10
3秒前
4秒前
科研通AI2S应助ShallowTrace采纳,获得10
5秒前
tkdzjr12345发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
蔺亦丝发布了新的文献求助20
7秒前
7秒前
WEIMING完成签到,获得积分10
7秒前
香蕉觅云应助luen采纳,获得10
8秒前
CC关注了科研通微信公众号
8秒前
kei完成签到 ,获得积分10
8秒前
漫画完成签到,获得积分10
9秒前
戏言121完成签到,获得积分10
9秒前
9秒前
Hello应助麦小光采纳,获得10
10秒前
10秒前
饱满南松发布了新的文献求助10
10秒前
科研小白完成签到,获得积分10
10秒前
威武白桃完成签到,获得积分10
10秒前
10秒前
11秒前
sjll发布了新的文献求助20
11秒前
11秒前
11秒前
大个应助木木采纳,获得10
11秒前
13秒前
所所应助江上挽风吟墨染采纳,获得50
14秒前
舒适雪曼发布了新的文献求助10
15秒前
科研通AI6应助科研痴采纳,获得10
16秒前
16秒前
包容的灰狼完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397679
求助须知:如何正确求助?哪些是违规求助? 4517650
关于积分的说明 14065175
捐赠科研通 4429664
什么是DOI,文献DOI怎么找? 2432471
邀请新用户注册赠送积分活动 1424965
关于科研通互助平台的介绍 1404052