A Context-Aware Multi-Event Identification Method for Nonintrusive Load Monitoring

滑动窗口协议 事件(粒子物理) 计算机科学 背景(考古学) 鉴定(生物学) 数据挖掘 智能电网 多样性(控制论) 窗口(计算) 人工智能 机器学习 模式识别(心理学) 工程类 操作系统 电气工程 物理 植物 古生物学 生物 量子力学
作者
Runhai Jiao,Chengyang Li,Gangyi Xun,Tianle Zhang,Brij B. Gupta,Guangwei Yan
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 194-204 被引量:12
标识
DOI:10.1109/tce.2023.3236452
摘要

Non-intrusive load monitoring (NILM) is a method that provides appliance power consumption information, which will help enhance the smart grid applications. This paper proposes an end-to-end NILM method for multi-event identification, which alleviates the challenges of setting hyper-parameters and detecting multiple events in traditional methods. In this paper, convolutional neural networks are used to extract the local features of target event from the aggregated data in the sliding window. Then, the multi-head self-attention mechanism is introduced to extract the correlation between the sequence of events in the window, and the contextual information is fully used to distinguish similar events. Finally, a multi-scale anchor detection framework is introduced to identify multiple events in the window. In addition, this paper also proposes a novel data augmentation method to resolve the problem of insufficient event samples in the dataset to support model training. Comparative experiments were performed on two public datasets (REDD and UKDALE) with a variety of recently proposed methods in this paper to demonstrate the effectiveness and superiority of our method. The proposed method here achieved an average $F_{1}$ score of 0.96 for multiple appliances of different power levels, which was 30% higher than that achieved by other compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao举报小苹果呀呀求助涉嫌违规
刚刚
刚刚
科研通AI2S应助why采纳,获得10
1秒前
锌离子电池电解液完成签到,获得积分10
1秒前
HY完成签到 ,获得积分10
2秒前
剑九黄发布了新的文献求助10
2秒前
夏浅完成签到,获得积分10
3秒前
3秒前
烟花应助Alioth采纳,获得10
3秒前
3秒前
lyxxll完成签到,获得积分10
4秒前
Yue完成签到,获得积分10
4秒前
药企牛马完成签到,获得积分20
5秒前
5秒前
5秒前
ayayaya完成签到 ,获得积分10
5秒前
浮游应助yzz采纳,获得10
5秒前
7秒前
8秒前
农艳宁发布了新的文献求助10
8秒前
iNk应助巴哒采纳,获得20
9秒前
张艳茹完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
hb完成签到,获得积分10
11秒前
郭素玲完成签到,获得积分10
11秒前
药企牛马发布了新的文献求助10
11秒前
ZhouZhou完成签到 ,获得积分10
11秒前
halo1994完成签到,获得积分10
12秒前
12秒前
丘比特应助阳光彩虹采纳,获得10
13秒前
14秒前
茶博士完成签到,获得积分10
14秒前
勤奋高丽发布了新的文献求助10
14秒前
蜘蛛道理发布了新的文献求助10
15秒前
15秒前
linci发布了新的文献求助10
15秒前
呼之欲出发布了新的文献求助10
16秒前
上官若男应助小猫咪采纳,获得10
16秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237739
求助须知:如何正确求助?哪些是违规求助? 4405468
关于积分的说明 13710602
捐赠科研通 4273720
什么是DOI,文献DOI怎么找? 2345109
邀请新用户注册赠送积分活动 1342257
关于科研通互助平台的介绍 1300114