A Context-Aware Multi-Event Identification Method for Nonintrusive Load Monitoring

滑动窗口协议 事件(粒子物理) 计算机科学 背景(考古学) 鉴定(生物学) 数据挖掘 智能电网 多样性(控制论) 窗口(计算) 人工智能 机器学习 模式识别(心理学) 工程类 古生物学 物理 植物 量子力学 操作系统 电气工程 生物
作者
Runhai Jiao,Chengyang Li,Gangyi Xun,Tianle Zhang,Brij B. Gupta,Guangwei Yan
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (2): 194-204 被引量:12
标识
DOI:10.1109/tce.2023.3236452
摘要

Non-intrusive load monitoring (NILM) is a method that provides appliance power consumption information, which will help enhance the smart grid applications. This paper proposes an end-to-end NILM method for multi-event identification, which alleviates the challenges of setting hyper-parameters and detecting multiple events in traditional methods. In this paper, convolutional neural networks are used to extract the local features of target event from the aggregated data in the sliding window. Then, the multi-head self-attention mechanism is introduced to extract the correlation between the sequence of events in the window, and the contextual information is fully used to distinguish similar events. Finally, a multi-scale anchor detection framework is introduced to identify multiple events in the window. In addition, this paper also proposes a novel data augmentation method to resolve the problem of insufficient event samples in the dataset to support model training. Comparative experiments were performed on two public datasets (REDD and UKDALE) with a variety of recently proposed methods in this paper to demonstrate the effectiveness and superiority of our method. The proposed method here achieved an average $F_{1}$ score of 0.96 for multiple appliances of different power levels, which was 30% higher than that achieved by other compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
乄卝完成签到 ,获得积分10
1秒前
CodeCraft应助scxl2000采纳,获得10
1秒前
1秒前
乐乐应助shenyanlei采纳,获得10
1秒前
糟糕的雪柳完成签到,获得积分20
1秒前
朴素的啤酒完成签到,获得积分10
2秒前
2秒前
2秒前
zhjwu完成签到,获得积分10
2秒前
2秒前
2秒前
LO7pM2完成签到,获得积分10
3秒前
hh完成签到,获得积分10
3秒前
茄茄女士完成签到 ,获得积分10
3秒前
今后应助桦桦采纳,获得10
3秒前
十柒完成签到 ,获得积分10
3秒前
4秒前
瘦瘦白昼发布了新的文献求助10
4秒前
甜蜜冷风完成签到,获得积分10
4秒前
郭倩完成签到,获得积分10
5秒前
小王发布了新的文献求助10
6秒前
6秒前
6秒前
清脆宛筠发布了新的文献求助10
6秒前
6秒前
zty完成签到,获得积分10
6秒前
6秒前
wushengdeyu完成签到,获得积分10
7秒前
7秒前
飞儿完成签到,获得积分10
7秒前
hongjing发布了新的文献求助10
7秒前
留胡子的妙松完成签到,获得积分10
7秒前
8秒前
NexusExplorer应助健忘的翠柏采纳,获得10
8秒前
8秒前
小梦完成签到,获得积分10
9秒前
大白完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067949
求助须知:如何正确求助?哪些是违规求助? 4289689
关于积分的说明 13364572
捐赠科研通 4109436
什么是DOI,文献DOI怎么找? 2250320
邀请新用户注册赠送积分活动 1255685
关于科研通互助平台的介绍 1188198