A unified global tractography framework for automatic visual pathway reconstruction

纤维束成像 计算机科学 视觉系统 人工智能 神经科学 磁共振弥散成像 心理学 磁共振成像 医学 放射科 视皮层
作者
Jianzhong He,Shun Yao,Qingrun Zeng,Jinping Chen,Tian Sang,Lei Xie,Yiang Pan,Yuanjing Feng
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:36 (7) 被引量:4
标识
DOI:10.1002/nbm.4904
摘要

The human visual pathway starts from the retina, passes through the retinogeniculate visual pathway, the optic radiation, and finally connects to the primary visual cortex. Diffusion MRI tractography is the only technology that can noninvasively reconstruct the visual pathway. However, complete and accurate visual pathway reconstruction is challenging because of the skull base environment and complex fiber geometries. Specifically, the optic nerve within the complex skull base environment can cause abnormal diffusion signals. The crossing and fanning fibers at the optic chiasm, and a sharp turn of Meyer's loop at the optic radiation, contribute to complex fiber geometries of the visual pathway. A fiber trajectory distribution (FTD) function-based tractography method of our previous work and several high sensitivity tractography methods can reveal these complex fiber geometries, but are accompanied by false-positive fibers. Thus, the related studies of the visual pathway mostly applied the expert region of interest selection strategy. However, interobserver variability is an issue in reconstructing an accurate visual pathway. In this paper, we propose a unified global tractography framework to automatically reconstruct the visual pathway. We first extend the FTD function to a high-order streamline differential equation for global trajectory estimation. At the global level, the tractography process is simplified as the estimation of global trajectory distribution coefficients by minimizing the cost between trajectory distribution and the selected directions under the prior guidance by introducing the tractography template as anatomic priors. Furthermore, we use a deep learning-based method and tractography template prior information to automatically generate the mask for tractography. The experimental results demonstrate that our proposed method can successfully reconstruct the visual pathway with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁点发布了新的文献求助10
刚刚
konoraha发布了新的文献求助10
1秒前
香蕉觅云应助mookie采纳,获得10
1秒前
SciGPT应助mahuahua采纳,获得10
2秒前
2秒前
英俊的铭应助霍师傅采纳,获得10
3秒前
蜡笔小新发布了新的文献求助10
3秒前
Owen应助cy采纳,获得10
3秒前
4秒前
6秒前
6秒前
6秒前
6秒前
7秒前
严好香完成签到 ,获得积分10
7秒前
7秒前
8秒前
长度2到发布了新的文献求助10
9秒前
9秒前
hyman1218发布了新的文献求助50
9秒前
君子扑火完成签到,获得积分10
9秒前
淡定的勒完成签到,获得积分10
10秒前
10秒前
浅笑_随风发布了新的文献求助10
10秒前
yinzenglinnn发布了新的文献求助10
10秒前
10秒前
zhangguo发布了新的文献求助100
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
李健应助完美平灵采纳,获得10
11秒前
11秒前
11秒前
打打应助konoraha采纳,获得10
11秒前
neufy发布了新的文献求助10
11秒前
nighwalk发布了新的文献求助10
12秒前
豌豆射手发布了新的文献求助10
12秒前
12秒前
13秒前
caocao发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515