A unified global tractography framework for automatic visual pathway reconstruction

纤维束成像 计算机科学 视觉系统 人工智能 神经科学 磁共振弥散成像 心理学 磁共振成像 医学 放射科 视皮层
作者
Jianzhong He,Shun Yao,Qingrun Zeng,Jinping Chen,Tian Sang,Lei Xie,Yiang Pan,Yuanjing Feng
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:36 (7) 被引量:4
标识
DOI:10.1002/nbm.4904
摘要

The human visual pathway starts from the retina, passes through the retinogeniculate visual pathway, the optic radiation, and finally connects to the primary visual cortex. Diffusion MRI tractography is the only technology that can noninvasively reconstruct the visual pathway. However, complete and accurate visual pathway reconstruction is challenging because of the skull base environment and complex fiber geometries. Specifically, the optic nerve within the complex skull base environment can cause abnormal diffusion signals. The crossing and fanning fibers at the optic chiasm, and a sharp turn of Meyer's loop at the optic radiation, contribute to complex fiber geometries of the visual pathway. A fiber trajectory distribution (FTD) function-based tractography method of our previous work and several high sensitivity tractography methods can reveal these complex fiber geometries, but are accompanied by false-positive fibers. Thus, the related studies of the visual pathway mostly applied the expert region of interest selection strategy. However, interobserver variability is an issue in reconstructing an accurate visual pathway. In this paper, we propose a unified global tractography framework to automatically reconstruct the visual pathway. We first extend the FTD function to a high-order streamline differential equation for global trajectory estimation. At the global level, the tractography process is simplified as the estimation of global trajectory distribution coefficients by minimizing the cost between trajectory distribution and the selected directions under the prior guidance by introducing the tractography template as anatomic priors. Furthermore, we use a deep learning-based method and tractography template prior information to automatically generate the mask for tractography. The experimental results demonstrate that our proposed method can successfully reconstruct the visual pathway with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助leeteukxx采纳,获得10
刚刚
田様应助勤恳的夏之采纳,获得10
刚刚
1秒前
李健应助华仔采纳,获得20
1秒前
善学以致用应助行7采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
柠檬九分酸完成签到,获得积分10
2秒前
Lee发布了新的文献求助10
2秒前
SciGPT应助Bonaventure采纳,获得10
2秒前
自觉的傥完成签到,获得积分10
2秒前
2秒前
hjx完成签到,获得积分10
3秒前
大模型应助银雀w采纳,获得10
3秒前
NING应助神勇初瑶采纳,获得10
3秒前
lott发布了新的文献求助10
3秒前
Xilli完成签到 ,获得积分10
4秒前
大个应助sdfg采纳,获得10
4秒前
大宽完成签到,获得积分10
4秒前
pluto应助教授王采纳,获得10
4秒前
mm应助教授王采纳,获得10
4秒前
GreenV完成签到,获得积分10
5秒前
6秒前
6秒前
洋洋羊发布了新的文献求助10
6秒前
7秒前
cc发布了新的文献求助20
7秒前
7秒前
8秒前
打工人肉肉完成签到,获得积分10
8秒前
9秒前
PINKRAY0417完成签到 ,获得积分10
9秒前
窦房结发布了新的文献求助10
10秒前
白子双完成签到,获得积分10
10秒前
zxy14完成签到,获得积分10
10秒前
滕滕发布了新的文献求助10
10秒前
Stamina678完成签到,获得积分10
10秒前
11秒前
11秒前
ttttt完成签到,获得积分10
11秒前
晨光中完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707759
求助须知:如何正确求助?哪些是违规求助? 5185605
关于积分的说明 15251636
捐赠科研通 4860988
什么是DOI,文献DOI怎么找? 2609102
邀请新用户注册赠送积分活动 1559828
关于科研通互助平台的介绍 1517619