A unified global tractography framework for automatic visual pathway reconstruction

纤维束成像 计算机科学 视觉系统 人工智能 神经科学 磁共振弥散成像 心理学 磁共振成像 医学 放射科 视皮层
作者
Jianzhong He,Shun Yao,Qingrun Zeng,Jinping Chen,Tian Sang,Lei Xie,Yiang Pan,Yuanjing Feng
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:36 (7) 被引量:2
标识
DOI:10.1002/nbm.4904
摘要

Abstract The human visual pathway starts from the retina, passes through the retinogeniculate visual pathway, the optic radiation, and finally connects to the primary visual cortex. Diffusion MRI tractography is the only technology that can noninvasively reconstruct the visual pathway. However, complete and accurate visual pathway reconstruction is challenging because of the skull base environment and complex fiber geometries. Specifically, the optic nerve within the complex skull base environment can cause abnormal diffusion signals. The crossing and fanning fibers at the optic chiasm, and a sharp turn of Meyer's loop at the optic radiation, contribute to complex fiber geometries of the visual pathway. A fiber trajectory distribution (FTD) function‐based tractography method of our previous work and several high sensitivity tractography methods can reveal these complex fiber geometries, but are accompanied by false‐positive fibers. Thus, the related studies of the visual pathway mostly applied the expert region of interest selection strategy. However, interobserver variability is an issue in reconstructing an accurate visual pathway. In this paper, we propose a unified global tractography framework to automatically reconstruct the visual pathway. We first extend the FTD function to a high‐order streamline differential equation for global trajectory estimation. At the global level, the tractography process is simplified as the estimation of global trajectory distribution coefficients by minimizing the cost between trajectory distribution and the selected directions under the prior guidance by introducing the tractography template as anatomic priors. Furthermore, we use a deep learning‐based method and tractography template prior information to automatically generate the mask for tractography. The experimental results demonstrate that our proposed method can successfully reconstruct the visual pathway with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鬼才之眼完成签到 ,获得积分10
刚刚
xfxx发布了新的文献求助10
1秒前
章家炜完成签到,获得积分20
1秒前
1秒前
茶博士发布了新的文献求助10
1秒前
专通下水道完成签到 ,获得积分10
6秒前
6秒前
6秒前
nenoaowu发布了新的文献求助30
6秒前
小马甲应助章家炜采纳,获得10
8秒前
赵李艺完成签到 ,获得积分10
8秒前
完美世界应助高大黄蜂采纳,获得10
9秒前
10秒前
10秒前
10秒前
zhangzhen发布了新的文献求助10
11秒前
马桶盖盖子完成签到 ,获得积分10
11秒前
12秒前
学术小白完成签到,获得积分10
12秒前
12秒前
郭豪琪发布了新的文献求助10
13秒前
认真丹亦完成签到 ,获得积分10
14秒前
周冬华完成签到,获得积分10
14秒前
烟花应助阔达的平卉采纳,获得10
14秒前
敦敦完成签到,获得积分20
14秒前
nenoaowu完成签到,获得积分10
14秒前
迟大猫应助Hangerli采纳,获得20
15秒前
自信安荷完成签到,获得积分10
15秒前
16秒前
16秒前
赵OO发布了新的文献求助10
16秒前
daniel发布了新的文献求助10
17秒前
敦敦发布了新的文献求助10
17秒前
Apocalypse_zjz完成签到,获得积分10
18秒前
福尔摩曦发布了新的文献求助30
19秒前
开心发布了新的文献求助10
19秒前
zzzzz完成签到,获得积分10
19秒前
19秒前
赵银志完成签到 ,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824