A unified global tractography framework for automatic visual pathway reconstruction

纤维束成像 计算机科学 视觉系统 人工智能 神经科学 磁共振弥散成像 心理学 磁共振成像 医学 放射科 视皮层
作者
Jianzhong He,Shun Yao,Qingrun Zeng,Jinping Chen,Tian Sang,Lei Xie,Yiang Pan,Yuanjing Feng
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:36 (7) 被引量:4
标识
DOI:10.1002/nbm.4904
摘要

The human visual pathway starts from the retina, passes through the retinogeniculate visual pathway, the optic radiation, and finally connects to the primary visual cortex. Diffusion MRI tractography is the only technology that can noninvasively reconstruct the visual pathway. However, complete and accurate visual pathway reconstruction is challenging because of the skull base environment and complex fiber geometries. Specifically, the optic nerve within the complex skull base environment can cause abnormal diffusion signals. The crossing and fanning fibers at the optic chiasm, and a sharp turn of Meyer's loop at the optic radiation, contribute to complex fiber geometries of the visual pathway. A fiber trajectory distribution (FTD) function-based tractography method of our previous work and several high sensitivity tractography methods can reveal these complex fiber geometries, but are accompanied by false-positive fibers. Thus, the related studies of the visual pathway mostly applied the expert region of interest selection strategy. However, interobserver variability is an issue in reconstructing an accurate visual pathway. In this paper, we propose a unified global tractography framework to automatically reconstruct the visual pathway. We first extend the FTD function to a high-order streamline differential equation for global trajectory estimation. At the global level, the tractography process is simplified as the estimation of global trajectory distribution coefficients by minimizing the cost between trajectory distribution and the selected directions under the prior guidance by introducing the tractography template as anatomic priors. Furthermore, we use a deep learning-based method and tractography template prior information to automatically generate the mask for tractography. The experimental results demonstrate that our proposed method can successfully reconstruct the visual pathway with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助生动映波采纳,获得10
1秒前
2秒前
wyw完成签到 ,获得积分10
3秒前
hu55发布了新的文献求助10
4秒前
斯文败类应助且欣且行采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助150
5秒前
脑洞疼应助橙子采纳,获得10
5秒前
zzz完成签到,获得积分10
7秒前
浮游应助左丘世立采纳,获得10
7秒前
fun完成签到,获得积分10
8秒前
加一点荒谬完成签到,获得积分10
9秒前
ccczzz应助最专业采纳,获得20
10秒前
cpchem发布了新的文献求助10
10秒前
充电宝应助电池小能手采纳,获得10
10秒前
酷波er应助专注的糖豆采纳,获得10
11秒前
Jasper应助碳烤小肥肠采纳,获得10
11秒前
fun发布了新的文献求助10
12秒前
狗狗研究专家完成签到,获得积分20
12秒前
13秒前
蒋紫妍完成签到,获得积分20
13秒前
14秒前
生动映波发布了新的文献求助10
14秒前
顺心的尔安完成签到,获得积分10
15秒前
精明幻悲发布了新的文献求助10
16秒前
17秒前
义气萝卜头完成签到 ,获得积分10
17秒前
科研通AI2S应助可爱问寒采纳,获得10
17秒前
18秒前
psybrain9527完成签到,获得积分10
19秒前
chen发布了新的文献求助10
19秒前
研友_VZG7GZ应助fun采纳,获得10
20秒前
z1z1z发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助150
21秒前
21秒前
传奇3应助XXY采纳,获得10
21秒前
22秒前
Peng发布了新的文献求助10
23秒前
佳佳发布了新的文献求助10
24秒前
游大达完成签到,获得积分0
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143116
求助须知:如何正确求助?哪些是违规求助? 4341139
关于积分的说明 13519750
捐赠科研通 4181415
什么是DOI,文献DOI怎么找? 2292915
邀请新用户注册赠送积分活动 1293554
关于科研通互助平台的介绍 1236153