A novel method for predicting DNA N4-methylcytosine sites based on deep forest algorithm

5-甲基胞嘧啶 计算生物学 计算机科学 DNA甲基化 随机森林 DNA 人工智能 基因 算法 生物 数学 遗传学 基因表达
作者
Yonglin Zhang,Mei Hu,Qi Mo,Wenli Gan,Jiesi Luo
出处
期刊:Journal of Bioinformatics and Computational Biology [World Scientific]
卷期号:21 (01)
标识
DOI:10.1142/s0219720023500038
摘要

N4-methyladenosine (4mC) methylation is an essential epigenetic modification of deoxyribonucleic acid (DNA) that plays a key role in many biological processes such as gene expression, gene replication and transcriptional regulation. Genome-wide identification and analysis of the 4mC sites can better reveal the epigenetic mechanisms that regulate various biological processes. Although some high-throughput genomic experimental methods can effectively facilitate the identification in a genome-wide scale, they are still too expensive and laborious for routine use. Computational methods can compensate for these disadvantages, but they still leave much room for performance improvement. In this study, we develop a non-NN-style deep learning-based approach for accurately predicting 4mC sites from genomic DNA sequence. We generate various informative features represented sequence fragments around 4mC sites, and subsequently implement them into a deep forest (DF) model. After training the deep model using 10-fold cross-validation, the overall accuracies of 85.0%, 90.0%, and 87.8% were achieved for three representative model organisms, A. thaliana, C. elegans, and D. melanogaster, respectively. In addition, extensive experiment results show that our proposed approach outperforms other existing state-of-the-art predictors in the 4mC identification. Our approach stands for the first DF-based algorithm for the prediction of 4mC sites, providing a novel idea in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧的以亦完成签到 ,获得积分10
3秒前
3秒前
xiazixiaojie发布了新的文献求助10
3秒前
3秒前
无限续完成签到,获得积分10
4秒前
ding应助monicaaaa采纳,获得10
4秒前
iNk应助CCC采纳,获得20
4秒前
CHEN发布了新的文献求助10
4秒前
5秒前
6秒前
隐形曼青应助ssds采纳,获得10
6秒前
科研毛毛虫完成签到,获得积分10
6秒前
流光闪过的线完成签到 ,获得积分10
8秒前
顾槿发布了新的文献求助10
8秒前
噜噜噜噜噜完成签到,获得积分10
9秒前
9秒前
李二狗完成签到,获得积分10
9秒前
9秒前
10秒前
ddffgz发布了新的文献求助10
11秒前
doolp完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI2S应助Oneplusssss采纳,获得10
13秒前
科研微微完成签到,获得积分10
13秒前
14秒前
Nic完成签到,获得积分10
14秒前
kento发布了新的文献求助10
15秒前
Zz发布了新的文献求助10
15秒前
Ava完成签到,获得积分20
16秒前
xiazixiaojie完成签到,获得积分10
16秒前
零度发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905