Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms

元启发式 计算机科学 水准点(测量) 算法 并行元启发式 威尔科克森符号秩检验 秩(图论) 机器学习 人工智能 数学优化 数学 统计 大地测量学 曼惠特尼U检验 组合数学 元优化 地理
作者
Zhongqiang Ma,Guohua Wu,Ponnuthurai Nagaratnam Suganthan,Aijuan Song,Qizhang Luo
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:77: 101248-101248 被引量:130
标识
DOI:10.1016/j.swevo.2023.101248
摘要

Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems, show competitive performances. However, many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 metaheuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the inspirational source and the essential operators for generating solutions. To comparatively evaluate the performance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with high oscillations) in terms of the trade-off between exploitation and exploration and population diversity compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic research area are discussed and some potential research directions are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的无敌完成签到,获得积分10
刚刚
刚刚
刚刚
小学生库里完成签到,获得积分10
刚刚
钱大大完成签到,获得积分10
刚刚
1秒前
2秒前
TT发布了新的文献求助10
2秒前
毛通完成签到,获得积分10
2秒前
pl脆脆发布了新的文献求助10
3秒前
张吉吉完成签到 ,获得积分10
3秒前
4秒前
4秒前
丘比特应助yg采纳,获得10
4秒前
echo发布了新的文献求助10
5秒前
5秒前
小杜发布了新的文献求助10
6秒前
6秒前
6秒前
chcmuer发布了新的文献求助30
6秒前
7秒前
科研通AI2S应助BinSir采纳,获得10
8秒前
pinwheel发布了新的文献求助10
8秒前
帆帆牛发布了新的文献求助10
9秒前
阚曦发布了新的文献求助10
9秒前
9秒前
SYLH应助坦率不凡采纳,获得10
9秒前
HJX发布了新的文献求助10
9秒前
10秒前
TT完成签到,获得积分10
10秒前
yyang完成签到,获得积分10
10秒前
10秒前
yaoqi完成签到,获得积分10
12秒前
13秒前
ly发布了新的文献求助10
14秒前
14秒前
Lyra完成签到,获得积分10
14秒前
14秒前
感松发布了新的文献求助10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451