重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms

元启发式 计算机科学 水准点(测量) 算法 并行元启发式 威尔科克森符号秩检验 秩(图论) 机器学习 人工智能 数学优化 数学 统计 大地测量学 曼惠特尼U检验 组合数学 元优化 地理
作者
Zhongqiang Ma,Guohua Wu,Ponnuthurai Nagaratnam Suganthan,Aijuan Song,Qizhang Luo
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:77: 101248-101248 被引量:130
标识
DOI:10.1016/j.swevo.2023.101248
摘要

Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems, show competitive performances. However, many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 metaheuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the inspirational source and the essential operators for generating solutions. To comparatively evaluate the performance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with high oscillations) in terms of the trade-off between exploitation and exploration and population diversity compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic research area are discussed and some potential research directions are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的平文完成签到 ,获得积分10
1秒前
大模型应助zkexuan采纳,获得10
1秒前
gouqi发布了新的文献求助20
1秒前
济南青年完成签到,获得积分10
1秒前
爆米花应助宇宙队采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
小小台yeah发布了新的文献求助10
3秒前
Smithjiang完成签到,获得积分10
3秒前
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
wittig完成签到,获得积分10
4秒前
雪山飞龙发布了新的文献求助30
4秒前
林珍发布了新的文献求助10
5秒前
ling发布了新的文献求助10
5秒前
小马甲应助CDL采纳,获得10
5秒前
5秒前
6秒前
6秒前
酷波er应助阳光的棒球采纳,获得10
6秒前
科研通AI6应助Dawn采纳,获得10
6秒前
qtr发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
昏睡的保温杯完成签到,获得积分10
8秒前
ljq发布了新的文献求助10
8秒前
幽默尔蓝发布了新的文献求助10
8秒前
8秒前
ssssss发布了新的文献求助10
8秒前
123完成签到,获得积分10
9秒前
9秒前
neko发布了新的文献求助10
10秒前
不知道完成签到,获得积分10
11秒前
澎鱼盐完成签到,获得积分10
11秒前
科研迪发布了新的文献求助10
11秒前
旋风狗超人完成签到,获得积分10
11秒前
CodeCraft应助帅气的高跟鞋采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567