Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms

元启发式 计算机科学 水准点(测量) 算法 并行元启发式 威尔科克森符号秩检验 秩(图论) 机器学习 人工智能 数学优化 数学 统计 大地测量学 曼惠特尼U检验 组合数学 元优化 地理
作者
Zhongqiang Ma,Guohua Wu,Ponnuthurai Nagaratnam Suganthan,Aijuan Song,Qizhang Luo
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:77: 101248-101248 被引量:130
标识
DOI:10.1016/j.swevo.2023.101248
摘要

Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems, show competitive performances. However, many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 metaheuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the inspirational source and the essential operators for generating solutions. To comparatively evaluate the performance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with high oscillations) in terms of the trade-off between exploitation and exploration and population diversity compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic research area are discussed and some potential research directions are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅的蜜粉完成签到,获得积分10
刚刚
leo发布了新的文献求助10
1秒前
1秒前
17312852068完成签到 ,获得积分10
1秒前
驿路梨花完成签到,获得积分10
1秒前
大漂亮完成签到,获得积分20
2秒前
yao关注了科研通微信公众号
2秒前
小陈完成签到,获得积分20
3秒前
Loeop完成签到,获得积分10
3秒前
3秒前
elivsZhou发布了新的文献求助10
3秒前
李可乐完成签到,获得积分10
3秒前
科研通AI6应助XXXX采纳,获得10
4秒前
雨田完成签到,获得积分10
4秒前
4秒前
猩猩星完成签到,获得积分10
4秒前
5秒前
茁茁发布了新的文献求助10
5秒前
likeit完成签到,获得积分20
6秒前
6秒前
陶远望完成签到,获得积分0
6秒前
大方芾发布了新的文献求助10
6秒前
河中医朵花完成签到,获得积分10
6秒前
lee完成签到,获得积分10
7秒前
艾雪完成签到,获得积分10
7秒前
大成子完成签到,获得积分10
8秒前
Mic应助刘运丽采纳,获得10
8秒前
黎黎发布了新的文献求助10
8秒前
8秒前
酷波er应助布丁圆团采纳,获得10
8秒前
8秒前
凌兰完成签到 ,获得积分10
9秒前
六道完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
DD完成签到,获得积分10
10秒前
Jasper应助VV采纳,获得10
10秒前
维生素完成签到,获得积分10
10秒前
xiaoju发布了新的文献求助10
10秒前
李洪星完成签到 ,获得积分10
11秒前
chenqinqin发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977