Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms

元启发式 计算机科学 水准点(测量) 算法 并行元启发式 威尔科克森符号秩检验 秩(图论) 机器学习 人工智能 数学优化 数学 统计 大地测量学 曼惠特尼U检验 组合数学 元优化 地理
作者
Zhongqiang Ma,Guohua Wu,Ponnuthurai Nagaratnam Suganthan,Aijuan Song,Qizhang Luo
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:77: 101248-101248 被引量:130
标识
DOI:10.1016/j.swevo.2023.101248
摘要

Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems, show competitive performances. However, many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 metaheuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the inspirational source and the essential operators for generating solutions. To comparatively evaluate the performance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with high oscillations) in terms of the trade-off between exploitation and exploration and population diversity compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic research area are discussed and some potential research directions are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助开心若菱采纳,获得10
1秒前
CXHY完成签到,获得积分10
1秒前
2秒前
浮游应助顺利的边牧采纳,获得10
2秒前
路振银发布了新的文献求助10
2秒前
2秒前
感动的世倌完成签到,获得积分10
3秒前
子云发布了新的文献求助10
3秒前
勤奋橘子发布了新的文献求助10
3秒前
tjy发布了新的文献求助10
4秒前
droke完成签到,获得积分10
5秒前
悦耳的诗云完成签到,获得积分10
5秒前
6秒前
不想起名字完成签到,获得积分10
6秒前
6秒前
九方嘉许发布了新的文献求助10
6秒前
7秒前
666完成签到,获得积分10
7秒前
7秒前
慕青应助大气的惜天采纳,获得10
7秒前
笑笑的妙松完成签到,获得积分10
7秒前
科研通AI6应助droke采纳,获得10
8秒前
8秒前
8秒前
9秒前
666发布了新的文献求助10
9秒前
9秒前
qiqi完成签到,获得积分10
9秒前
9秒前
卫元灵完成签到,获得积分20
10秒前
英姑应助细腻的金毛采纳,获得10
10秒前
我方还剩艺人完成签到,获得积分10
11秒前
12秒前
glory0510发布了新的文献求助10
13秒前
九方嘉许完成签到,获得积分10
13秒前
曹先生发布了新的文献求助10
13秒前
明亮嘉熙发布了新的文献求助10
14秒前
儒雅的夜白完成签到,获得积分10
14秒前
天上掉下篇NCS完成签到,获得积分10
16秒前
琪琪完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124930
求助须知:如何正确求助?哪些是违规求助? 4328978
关于积分的说明 13489368
捐赠科研通 4163582
什么是DOI,文献DOI怎么找? 2282431
邀请新用户注册赠送积分活动 1283622
关于科研通互助平台的介绍 1222842