Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms

元启发式 计算机科学 水准点(测量) 算法 并行元启发式 威尔科克森符号秩检验 秩(图论) 机器学习 人工智能 数学 统计 元优化 曼惠特尼U检验 大地测量学 组合数学 地理
作者
Zhongqiang Ma,Guohua Wu,Ponnuthurai Nagaratnam Suganthan,Aijuan Song,Qizhang Luo
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:77: 101248-101248 被引量:49
标识
DOI:10.1016/j.swevo.2023.101248
摘要

Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems, show competitive performances. However, many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 metaheuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the inspirational source and the essential operators for generating solutions. To comparatively evaluate the performance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with high oscillations) in terms of the trade-off between exploitation and exploration and population diversity compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic research area are discussed and some potential research directions are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮尘完成签到 ,获得积分0
4秒前
石破天惊完成签到,获得积分10
6秒前
科研通AI2S应助蓝桉采纳,获得10
7秒前
虚幻的冰露完成签到 ,获得积分10
7秒前
wanci完成签到,获得积分0
9秒前
张张完成签到 ,获得积分10
12秒前
客官们帮帮忙完成签到 ,获得积分10
14秒前
鲁大师完成签到 ,获得积分10
17秒前
缓慢雅青完成签到 ,获得积分10
22秒前
徐茂瑜完成签到 ,获得积分10
22秒前
嘻嘻完成签到 ,获得积分10
23秒前
你可真下饭完成签到 ,获得积分10
23秒前
Hosea完成签到 ,获得积分10
25秒前
henry完成签到 ,获得积分10
26秒前
vincentbioinfo完成签到,获得积分10
28秒前
彪壮的微笑完成签到 ,获得积分10
33秒前
伊可完成签到 ,获得积分10
35秒前
人参跳芭蕾完成签到 ,获得积分10
40秒前
41秒前
41秒前
冰阔落完成签到 ,获得积分10
41秒前
Liao完成签到 ,获得积分10
42秒前
yiling发布了新的文献求助10
46秒前
doubleshake发布了新的文献求助10
48秒前
彳亍完成签到 ,获得积分10
50秒前
50秒前
黑色的白鲸完成签到,获得积分10
54秒前
56秒前
DD立芬完成签到 ,获得积分10
56秒前
乐观的从云完成签到,获得积分10
56秒前
三金完成签到,获得积分10
57秒前
58秒前
科研佟完成签到 ,获得积分10
58秒前
1分钟前
ZZ完成签到,获得积分10
1分钟前
秦pale发布了新的文献求助30
1分钟前
James完成签到,获得积分10
1分钟前
小木子发布了新的文献求助10
1分钟前
可爱的函函应助yiling采纳,获得10
1分钟前
狼洪明完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788055
关于积分的说明 7784485
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625557
版权声明 601010