有界函数
Neumann边界条件
数学
趋化性
领域(数学分析)
边界(拓扑)
非线性系统
正多边形
数学分析
边值问题
纯数学
几何学
物理
化学
生物化学
受体
量子力学
标识
DOI:10.1016/j.jde.2023.08.032
摘要
We consider classical solutions to the chemotaxis system with logistic source, au−μu2, under nonlinear Neumann boundary conditions ∂u∂ν=|u|p with p>1 in a smooth convex bounded domain Ω⊂Rn, where n≥2. This paper aims to show that if p<32, and μ>0, n=2, or μ is sufficiently large when n≥3, then the parabolic-elliptic chemotaxis system admits a unique nonnegative global-in-time classical solution that is bounded in Ω×(0,∞). The similar result is also true if p<32, n=2, and μ>0 or p<75, n=3, and μ is sufficiently large for the parabolic-parabolic chemotaxis system.
科研通智能强力驱动
Strongly Powered by AbleSci AI