MIGAN: GAN for facilitating malware image synthesis with improved malware classification on novel dataset

恶意软件 计算机科学 人工智能 机器学习 操作码 鉴别器 模式识别(心理学) 生成对抗网络 支持向量机 灰度 图像(数学) 数据挖掘 计算机安全 计算机硬件 电信 探测器
作者
Osho Sharma,Akashdeep Sharma,Arvind Kalia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122678-122678 被引量:7
标识
DOI:10.1016/j.eswa.2023.122678
摘要

Malware visualization is a technique wherein malware binaries are represented as grayscale or color images in order to identify and extract discriminating features for classification. This technique is effectively better than classic machine learning based malware recognition techniques that require significant domain expertise or time-consuming behavioral analysis to identify discriminating features. In this manuscript, a Generative Adversarial Network (GAN) architecture is introduced for facilitating malware image synthesis called ‘MIGAN’, that can quickly produce high-quality synthetic malware images and then classify malware samples into families. The proposed framework consists of a generator and discriminator network paired with a classification module. The novelty exists in the GAN network structure, hybrid loss function, new dataset and classification network structure. The MIGAN generated images manage to achieve better Inception Score than original malware images (2.81 vs 1.90, respectively) along with better Fréchet Inception Distance score and Kernel Inception Distance score. The synthetic malware images primarily serve two purposes: firstly, it solves the class imbalance problem in custom built and public ‘Malimg’ datasets. Secondly, since these images resemble existing malware images, it is assessed to be fairly similar to upcoming ‘zero-day’ or ‘previously unseen’ malware that can be eventually discovered in the future. The two classification networks (custom classification network with traditional learning approach and pretrained Resnet50v2 network with transfer learning approach) were supplemented and trained with nearly 50,000 synthetic malware images. The proposed framework achieved promising scores of 99.2% Area Under the Curve (AUC), 99.3% F1-score and 99.5% Accuracy. The comprehensive evaluation and excellent results demonstrate the effectiveness of the proposed framework. This framework can also be applied to image synthesis with several other types of images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111111完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助dff采纳,获得10
1秒前
阿仔完成签到,获得积分10
1秒前
2秒前
2秒前
iiiiiuy发布了新的文献求助10
3秒前
zr完成签到,获得积分10
3秒前
科研通AI6应助甜兮采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
4秒前
希望天下0贩的0应助zv采纳,获得10
4秒前
Healer完成签到,获得积分10
4秒前
MICA关注了科研通微信公众号
4秒前
4秒前
bkagyin应助望空采纳,获得10
5秒前
高强发布了新的文献求助20
5秒前
ytzhang0587给花花的求助进行了留言
6秒前
超帅的靖完成签到,获得积分20
6秒前
陈杰发布了新的文献求助10
6秒前
6秒前
天123发布了新的文献求助10
7秒前
7秒前
大朋发布了新的文献求助10
7秒前
哆啦A梦完成签到,获得积分10
7秒前
8秒前
王肖儿发布了新的文献求助10
8秒前
壑舟完成签到,获得积分10
9秒前
茸茸茸完成签到,获得积分10
9秒前
范范778完成签到 ,获得积分10
10秒前
一切都好发布了新的文献求助30
10秒前
淡定井完成签到 ,获得积分10
10秒前
銭銭銭完成签到,获得积分20
10秒前
顺利鱼发布了新的文献求助30
10秒前
11秒前
zzzllove发布了新的文献求助10
11秒前
波波发布了新的文献求助10
12秒前
耶耶耶耶发布了新的文献求助10
12秒前
13秒前
Ava应助漫天采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726