清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MIGAN: GAN for facilitating malware image synthesis with improved malware classification on novel dataset

恶意软件 计算机科学 人工智能 机器学习 操作码 鉴别器 模式识别(心理学) 生成对抗网络 支持向量机 灰度 图像(数学) 数据挖掘 计算机安全 电信 探测器 计算机硬件
作者
Osho Sharma,Akashdeep Sharma,Arvind Kalia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122678-122678 被引量:7
标识
DOI:10.1016/j.eswa.2023.122678
摘要

Malware visualization is a technique wherein malware binaries are represented as grayscale or color images in order to identify and extract discriminating features for classification. This technique is effectively better than classic machine learning based malware recognition techniques that require significant domain expertise or time-consuming behavioral analysis to identify discriminating features. In this manuscript, a Generative Adversarial Network (GAN) architecture is introduced for facilitating malware image synthesis called ‘MIGAN’, that can quickly produce high-quality synthetic malware images and then classify malware samples into families. The proposed framework consists of a generator and discriminator network paired with a classification module. The novelty exists in the GAN network structure, hybrid loss function, new dataset and classification network structure. The MIGAN generated images manage to achieve better Inception Score than original malware images (2.81 vs 1.90, respectively) along with better Fréchet Inception Distance score and Kernel Inception Distance score. The synthetic malware images primarily serve two purposes: firstly, it solves the class imbalance problem in custom built and public ‘Malimg’ datasets. Secondly, since these images resemble existing malware images, it is assessed to be fairly similar to upcoming ‘zero-day’ or ‘previously unseen’ malware that can be eventually discovered in the future. The two classification networks (custom classification network with traditional learning approach and pretrained Resnet50v2 network with transfer learning approach) were supplemented and trained with nearly 50,000 synthetic malware images. The proposed framework achieved promising scores of 99.2% Area Under the Curve (AUC), 99.3% F1-score and 99.5% Accuracy. The comprehensive evaluation and excellent results demonstrate the effectiveness of the proposed framework. This framework can also be applied to image synthesis with several other types of images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
大模型应助koubi采纳,获得10
13秒前
达克赛德完成签到 ,获得积分10
33秒前
小刘同学完成签到,获得积分20
37秒前
42秒前
57秒前
复杂的可乐完成签到 ,获得积分10
58秒前
Lillianzhu1完成签到,获得积分10
1分钟前
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
机智的孤兰完成签到 ,获得积分10
1分钟前
1分钟前
cgs完成签到 ,获得积分10
1分钟前
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
2分钟前
zijingsy完成签到 ,获得积分0
2分钟前
树妖三三完成签到,获得积分10
2分钟前
2分钟前
2分钟前
舒适的一凤完成签到 ,获得积分10
2分钟前
2分钟前
梓歆发布了新的文献求助10
2分钟前
龚瑶完成签到 ,获得积分10
2分钟前
2分钟前
xh完成签到,获得积分10
2分钟前
3分钟前
3分钟前
时老完成签到 ,获得积分10
3分钟前
3分钟前
tszjw168完成签到 ,获得积分0
3分钟前
3分钟前
赘婿应助梓歆采纳,获得10
3分钟前
柠檬普洱茶完成签到,获得积分10
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
3分钟前
4分钟前
梓歆发布了新的文献求助10
4分钟前
开心每一天完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482586
求助须知:如何正确求助?哪些是违规求助? 4583348
关于积分的说明 14389200
捐赠科研通 4512482
什么是DOI,文献DOI怎么找? 2472995
邀请新用户注册赠送积分活动 1459182
关于科研通互助平台的介绍 1432685