已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MIGAN: GAN for facilitating malware image synthesis with improved malware classification on novel dataset

恶意软件 计算机科学 人工智能 机器学习 操作码 鉴别器 模式识别(心理学) 生成对抗网络 支持向量机 灰度 图像(数学) 数据挖掘 计算机安全 电信 探测器 计算机硬件
作者
Osho Sharma,Akashdeep Sharma,Arvind Kalia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122678-122678 被引量:7
标识
DOI:10.1016/j.eswa.2023.122678
摘要

Malware visualization is a technique wherein malware binaries are represented as grayscale or color images in order to identify and extract discriminating features for classification. This technique is effectively better than classic machine learning based malware recognition techniques that require significant domain expertise or time-consuming behavioral analysis to identify discriminating features. In this manuscript, a Generative Adversarial Network (GAN) architecture is introduced for facilitating malware image synthesis called ‘MIGAN’, that can quickly produce high-quality synthetic malware images and then classify malware samples into families. The proposed framework consists of a generator and discriminator network paired with a classification module. The novelty exists in the GAN network structure, hybrid loss function, new dataset and classification network structure. The MIGAN generated images manage to achieve better Inception Score than original malware images (2.81 vs 1.90, respectively) along with better Fréchet Inception Distance score and Kernel Inception Distance score. The synthetic malware images primarily serve two purposes: firstly, it solves the class imbalance problem in custom built and public ‘Malimg’ datasets. Secondly, since these images resemble existing malware images, it is assessed to be fairly similar to upcoming ‘zero-day’ or ‘previously unseen’ malware that can be eventually discovered in the future. The two classification networks (custom classification network with traditional learning approach and pretrained Resnet50v2 network with transfer learning approach) were supplemented and trained with nearly 50,000 synthetic malware images. The proposed framework achieved promising scores of 99.2% Area Under the Curve (AUC), 99.3% F1-score and 99.5% Accuracy. The comprehensive evaluation and excellent results demonstrate the effectiveness of the proposed framework. This framework can also be applied to image synthesis with several other types of images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joe完成签到,获得积分10
刚刚
黑巧的融化完成签到 ,获得积分10
刚刚
miao发布了新的文献求助30
1秒前
1秒前
盐植物完成签到,获得积分10
2秒前
王木木完成签到 ,获得积分10
2秒前
康康完成签到 ,获得积分10
2秒前
三月完成签到,获得积分10
2秒前
少年锦时完成签到,获得积分10
5秒前
5秒前
彭于晏应助贾靖涵采纳,获得30
7秒前
7秒前
徐嘎嘎发布了新的文献求助10
7秒前
zhaoqing发布了新的文献求助10
8秒前
咕噜发布了新的文献求助10
9秒前
相金鹏完成签到,获得积分10
9秒前
狗十七完成签到 ,获得积分10
10秒前
白英完成签到,获得积分10
11秒前
wsw111发布了新的文献求助30
12秒前
chenllxx完成签到 ,获得积分10
13秒前
左江夜渔人完成签到 ,获得积分10
14秒前
14秒前
哈哈完成签到,获得积分10
14秒前
相金鹏发布了新的文献求助10
15秒前
xie完成签到 ,获得积分0
16秒前
一只眠羊完成签到 ,获得积分10
17秒前
18秒前
bajiu完成签到 ,获得积分10
18秒前
TiAmo完成签到,获得积分10
19秒前
哈哈发布了新的文献求助10
19秒前
灶灶完成签到 ,获得积分10
19秒前
LXL完成签到,获得积分10
22秒前
刘振坤完成签到,获得积分10
22秒前
LFYL发布了新的文献求助10
22秒前
英姑应助Alan采纳,获得10
22秒前
感性的俊驰完成签到 ,获得积分10
23秒前
will完成签到,获得积分10
25秒前
2R完成签到,获得积分10
27秒前
华仔应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004