MIGAN: GAN for facilitating malware image synthesis with improved malware classification on novel dataset

恶意软件 计算机科学 人工智能 机器学习 操作码 鉴别器 模式识别(心理学) 生成对抗网络 支持向量机 灰度 图像(数学) 数据挖掘 计算机安全 计算机硬件 电信 探测器
作者
Osho Sharma,Akashdeep Sharma,Arvind Kalia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122678-122678 被引量:7
标识
DOI:10.1016/j.eswa.2023.122678
摘要

Malware visualization is a technique wherein malware binaries are represented as grayscale or color images in order to identify and extract discriminating features for classification. This technique is effectively better than classic machine learning based malware recognition techniques that require significant domain expertise or time-consuming behavioral analysis to identify discriminating features. In this manuscript, a Generative Adversarial Network (GAN) architecture is introduced for facilitating malware image synthesis called ‘MIGAN’, that can quickly produce high-quality synthetic malware images and then classify malware samples into families. The proposed framework consists of a generator and discriminator network paired with a classification module. The novelty exists in the GAN network structure, hybrid loss function, new dataset and classification network structure. The MIGAN generated images manage to achieve better Inception Score than original malware images (2.81 vs 1.90, respectively) along with better Fréchet Inception Distance score and Kernel Inception Distance score. The synthetic malware images primarily serve two purposes: firstly, it solves the class imbalance problem in custom built and public ‘Malimg’ datasets. Secondly, since these images resemble existing malware images, it is assessed to be fairly similar to upcoming ‘zero-day’ or ‘previously unseen’ malware that can be eventually discovered in the future. The two classification networks (custom classification network with traditional learning approach and pretrained Resnet50v2 network with transfer learning approach) were supplemented and trained with nearly 50,000 synthetic malware images. The proposed framework achieved promising scores of 99.2% Area Under the Curve (AUC), 99.3% F1-score and 99.5% Accuracy. The comprehensive evaluation and excellent results demonstrate the effectiveness of the proposed framework. This framework can also be applied to image synthesis with several other types of images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的思天完成签到 ,获得积分10
1秒前
薇薇完成签到,获得积分10
1秒前
1秒前
1秒前
cc完成签到,获得积分10
2秒前
研友_LMBAXn完成签到,获得积分10
2秒前
一二发布了新的文献求助30
2秒前
2秒前
luchen完成签到,获得积分20
3秒前
3秒前
3秒前
在水一方应助weiqimin采纳,获得10
4秒前
优秀冬天完成签到 ,获得积分10
4秒前
李爱国应助陶醉的新瑶采纳,获得10
4秒前
4秒前
4秒前
bolysu完成签到,获得积分10
5秒前
5秒前
流苏完成签到,获得积分10
6秒前
6秒前
chenyuns发布了新的文献求助10
6秒前
隐形曼青应助kyb5623采纳,获得10
6秒前
上官若男应助多多采纳,获得10
6秒前
xjy1521完成签到,获得积分10
6秒前
自信白梦完成签到,获得积分10
6秒前
陈秋发布了新的文献求助10
6秒前
FashionBoy应助w我我我采纳,获得10
7秒前
flj7038完成签到,获得积分0
7秒前
清脆的飞丹完成签到,获得积分10
7秒前
霍三石发布了新的文献求助10
7秒前
游俊杰发布了新的文献求助10
8秒前
科研圈外人完成签到 ,获得积分10
8秒前
kk发布了新的文献求助10
9秒前
haorui完成签到,获得积分10
10秒前
10秒前
1234发布了新的文献求助10
11秒前
清脆愫完成签到 ,获得积分10
12秒前
lin完成签到,获得积分10
12秒前
12秒前
聪明大米完成签到 ,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443