MIGAN: GAN for facilitating malware image synthesis with improved malware classification on novel dataset

恶意软件 计算机科学 人工智能 机器学习 操作码 鉴别器 模式识别(心理学) 生成对抗网络 支持向量机 灰度 图像(数学) 数据挖掘 计算机安全 计算机硬件 电信 探测器
作者
Osho Sharma,Akashdeep Sharma,Arvind Kalia
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122678-122678 被引量:7
标识
DOI:10.1016/j.eswa.2023.122678
摘要

Malware visualization is a technique wherein malware binaries are represented as grayscale or color images in order to identify and extract discriminating features for classification. This technique is effectively better than classic machine learning based malware recognition techniques that require significant domain expertise or time-consuming behavioral analysis to identify discriminating features. In this manuscript, a Generative Adversarial Network (GAN) architecture is introduced for facilitating malware image synthesis called ‘MIGAN’, that can quickly produce high-quality synthetic malware images and then classify malware samples into families. The proposed framework consists of a generator and discriminator network paired with a classification module. The novelty exists in the GAN network structure, hybrid loss function, new dataset and classification network structure. The MIGAN generated images manage to achieve better Inception Score than original malware images (2.81 vs 1.90, respectively) along with better Fréchet Inception Distance score and Kernel Inception Distance score. The synthetic malware images primarily serve two purposes: firstly, it solves the class imbalance problem in custom built and public ‘Malimg’ datasets. Secondly, since these images resemble existing malware images, it is assessed to be fairly similar to upcoming ‘zero-day’ or ‘previously unseen’ malware that can be eventually discovered in the future. The two classification networks (custom classification network with traditional learning approach and pretrained Resnet50v2 network with transfer learning approach) were supplemented and trained with nearly 50,000 synthetic malware images. The proposed framework achieved promising scores of 99.2% Area Under the Curve (AUC), 99.3% F1-score and 99.5% Accuracy. The comprehensive evaluation and excellent results demonstrate the effectiveness of the proposed framework. This framework can also be applied to image synthesis with several other types of images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AL完成签到,获得积分10
刚刚
SciGPT应助YHT采纳,获得10
刚刚
搬砖发布了新的文献求助30
刚刚
1秒前
科研通AI6应助Andrea采纳,获得10
1秒前
遐迩发布了新的文献求助10
1秒前
风清扬发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
思源应助派大星采纳,获得10
1秒前
酷波er应助666JACS采纳,获得10
2秒前
2秒前
向沛山完成签到 ,获得积分20
3秒前
沈彬彬发布了新的文献求助10
3秒前
朴实浩宇完成签到 ,获得积分10
3秒前
3秒前
一念初见发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
昱鱼七seven完成签到,获得积分10
4秒前
旗树树发布了新的文献求助20
4秒前
热心的银耳汤完成签到 ,获得积分10
5秒前
5秒前
5秒前
xuanxuan发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
格格发布了新的文献求助10
5秒前
小西完成签到,获得积分10
6秒前
chen发布了新的文献求助10
6秒前
桐桐应助Sarina采纳,获得10
7秒前
浮游应助宇文书翠采纳,获得10
7秒前
7秒前
sun发布了新的文献求助10
7秒前
小葡完成签到,获得积分10
7秒前
恰个泡芙完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988550
求助须知:如何正确求助?哪些是违规求助? 4237967
关于积分的说明 13201204
捐赠科研通 4031812
什么是DOI,文献DOI怎么找? 2205890
邀请新用户注册赠送积分活动 1217227
关于科研通互助平台的介绍 1135383