MIGAN: GAN for facilitating malware image synthesis with improved malware classification on novel dataset

恶意软件 计算机科学 人工智能 机器学习 操作码 鉴别器 模式识别(心理学) 生成对抗网络 支持向量机 灰度 图像(数学) 数据挖掘 计算机安全 电信 探测器 计算机硬件
作者
Osho Sharma,Akashdeep Sharma,Arvind Kalia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122678-122678 被引量:7
标识
DOI:10.1016/j.eswa.2023.122678
摘要

Malware visualization is a technique wherein malware binaries are represented as grayscale or color images in order to identify and extract discriminating features for classification. This technique is effectively better than classic machine learning based malware recognition techniques that require significant domain expertise or time-consuming behavioral analysis to identify discriminating features. In this manuscript, a Generative Adversarial Network (GAN) architecture is introduced for facilitating malware image synthesis called ‘MIGAN’, that can quickly produce high-quality synthetic malware images and then classify malware samples into families. The proposed framework consists of a generator and discriminator network paired with a classification module. The novelty exists in the GAN network structure, hybrid loss function, new dataset and classification network structure. The MIGAN generated images manage to achieve better Inception Score than original malware images (2.81 vs 1.90, respectively) along with better Fréchet Inception Distance score and Kernel Inception Distance score. The synthetic malware images primarily serve two purposes: firstly, it solves the class imbalance problem in custom built and public ‘Malimg’ datasets. Secondly, since these images resemble existing malware images, it is assessed to be fairly similar to upcoming ‘zero-day’ or ‘previously unseen’ malware that can be eventually discovered in the future. The two classification networks (custom classification network with traditional learning approach and pretrained Resnet50v2 network with transfer learning approach) were supplemented and trained with nearly 50,000 synthetic malware images. The proposed framework achieved promising scores of 99.2% Area Under the Curve (AUC), 99.3% F1-score and 99.5% Accuracy. The comprehensive evaluation and excellent results demonstrate the effectiveness of the proposed framework. This framework can also be applied to image synthesis with several other types of images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdf完成签到,获得积分20
刚刚
无问西东发布了新的文献求助10
刚刚
刚刚
lrz发布了新的文献求助10
刚刚
小芒果完成签到,获得积分10
1秒前
2秒前
瘦瘦彩虹完成签到,获得积分10
2秒前
Chiwen发布了新的文献求助10
2秒前
谦让寄容发布了新的文献求助10
2秒前
Painkiller_发布了新的文献求助10
2秒前
Gamera完成签到 ,获得积分10
5秒前
5秒前
核桃发布了新的文献求助10
6秒前
Zuguo发布了新的文献求助10
6秒前
无问西东完成签到,获得积分10
7秒前
老张水泥建材完成签到,获得积分10
8秒前
芊芊完成签到 ,获得积分10
8秒前
9秒前
jdp完成签到,获得积分10
9秒前
12秒前
sdf发布了新的文献求助10
13秒前
14秒前
啊印发布了新的文献求助10
17秒前
liu发布了新的文献求助10
17秒前
复杂斓发布了新的文献求助10
18秒前
左手树完成签到,获得积分10
19秒前
风趣雪卉完成签到 ,获得积分10
19秒前
Lucas应助Painkiller_采纳,获得10
19秒前
NN完成签到 ,获得积分10
20秒前
20秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
22秒前
思源应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
传奇3应助Sir.夏季风采纳,获得10
22秒前
wlscj应助科研通管家采纳,获得20
22秒前
劳恩特应助科研通管家采纳,获得10
22秒前
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648