MIGAN: GAN for facilitating malware image synthesis with improved malware classification on novel dataset

恶意软件 计算机科学 人工智能 机器学习 操作码 鉴别器 模式识别(心理学) 生成对抗网络 支持向量机 灰度 图像(数学) 数据挖掘 计算机安全 计算机硬件 电信 探测器
作者
Osho Sharma,Akashdeep Sharma,Arvind Kalia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122678-122678 被引量:7
标识
DOI:10.1016/j.eswa.2023.122678
摘要

Malware visualization is a technique wherein malware binaries are represented as grayscale or color images in order to identify and extract discriminating features for classification. This technique is effectively better than classic machine learning based malware recognition techniques that require significant domain expertise or time-consuming behavioral analysis to identify discriminating features. In this manuscript, a Generative Adversarial Network (GAN) architecture is introduced for facilitating malware image synthesis called ‘MIGAN’, that can quickly produce high-quality synthetic malware images and then classify malware samples into families. The proposed framework consists of a generator and discriminator network paired with a classification module. The novelty exists in the GAN network structure, hybrid loss function, new dataset and classification network structure. The MIGAN generated images manage to achieve better Inception Score than original malware images (2.81 vs 1.90, respectively) along with better Fréchet Inception Distance score and Kernel Inception Distance score. The synthetic malware images primarily serve two purposes: firstly, it solves the class imbalance problem in custom built and public ‘Malimg’ datasets. Secondly, since these images resemble existing malware images, it is assessed to be fairly similar to upcoming ‘zero-day’ or ‘previously unseen’ malware that can be eventually discovered in the future. The two classification networks (custom classification network with traditional learning approach and pretrained Resnet50v2 network with transfer learning approach) were supplemented and trained with nearly 50,000 synthetic malware images. The proposed framework achieved promising scores of 99.2% Area Under the Curve (AUC), 99.3% F1-score and 99.5% Accuracy. The comprehensive evaluation and excellent results demonstrate the effectiveness of the proposed framework. This framework can also be applied to image synthesis with several other types of images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BK发布了新的文献求助10
刚刚
Ying发布了新的文献求助30
1秒前
梁真真完成签到 ,获得积分10
1秒前
1秒前
1秒前
小逗比发布了新的文献求助10
1秒前
张佳乐发布了新的文献求助10
2秒前
2秒前
日出发布了新的文献求助10
2秒前
4秒前
陈陈发布了新的文献求助10
6秒前
嘿嘿应助北北采纳,获得30
6秒前
Twonej给1111的求助进行了留言
6秒前
7秒前
英俊的铭应助111采纳,获得10
9秒前
Victor完成签到 ,获得积分10
11秒前
joxes发布了新的文献求助10
12秒前
12秒前
Simon_chat完成签到,获得积分10
14秒前
传奇3应助BK采纳,获得10
14秒前
锵锵锵应助安静初瑶采纳,获得10
15秒前
我是老大应助Lusteri采纳,获得10
15秒前
17秒前
18秒前
浮游应助djbj2022采纳,获得10
19秒前
23秒前
优秀笑柳完成签到,获得积分10
23秒前
丘比特应助trussie采纳,获得10
23秒前
Cherish完成签到,获得积分10
24秒前
111完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
Owen应助马上飞上宇宙采纳,获得10
25秒前
善学以致用应助jc采纳,获得10
25秒前
27秒前
划分完成签到,获得积分10
27秒前
111发布了新的文献求助10
28秒前
fanfan完成签到,获得积分10
29秒前
周久完成签到 ,获得积分10
29秒前
ada发布了新的文献求助10
30秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741