Improved prediction of hourly PM2.5 concentrations with a long short-term memory and spatio-temporal causal convolutional network deep learning model

均方误差 主成分分析 空气质量指数 深度学习 突出 人工智能 相关系数 期限(时间) 特征(语言学) 卷积神经网络 计算机科学 相关性 机器学习 统计 气象学 数学 地理 几何学 哲学 物理 语言学 量子力学
作者
Yinsheng Chen,Lin Huang,Xiaodong Xie,Zhenxin Liu,Jianlin Hu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 168672-168672 被引量:6
标识
DOI:10.1016/j.scitotenv.2023.168672
摘要

Accurate prediction of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) is important for environmental management and human health protection. In recent years, many efforts have been devoted to develop air quality predictions using the machine learning and deep learning techniques. In this study, we propose a deep learning model for short-term PM2.5 predictions. The salient feature of the proposed model is that the convolution in the model architecture is causal, where the output of a time step is only convolved with components of the same or earlier time step from the previous layer. The model also weighs the spatial correlation between multiple monitoring stations. Through temporal and spatial correlation analysis, relevant information is screened from the monitoring stations with a strong relationship with the target station. Information from the target and related sites is then taken as input and fed into the model. A case study is conducted in Nanjing, China from January 1, 2020 to December 31, 2020. Using historical air quality and meteorological data from nine monitoring stations, the model predicts PM2.5 concentrations for the next hour. The experimental results show that the predicted PM2.5 concentrations are consistent with observation, with correlation coefficient (R2) and Root Mean Squared Error (RMSE) of our model are 0.92 and 6.75 μg/m3. Additionally, to better understand the factors affecting PM2.5 levels in different seasons, a machine learning algorithm based on Principal Component Analysis (PCA) is used to analyze the correlations between PM2.5 and its influencing factors. By identifying the main factors affecting PM2.5 and optimizing the input of the predictive model, the application of PCA in the model further improves the prediction accuracy, with decrease of up to 17.2 % in RMSE and 38.6 % in mean absolute error (MAE). The deep learning model established in this study provide a valuable tool for air quality management and public health protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sptyzl完成签到 ,获得积分10
1秒前
隐形曼青应助执着夏山采纳,获得10
1秒前
超级mxl发布了新的文献求助10
1秒前
高不二完成签到,获得积分20
2秒前
2秒前
2秒前
可飞完成签到,获得积分10
3秒前
狂野的以珊完成签到,获得积分10
3秒前
3秒前
SciGPT应助聪明的含蕾采纳,获得10
4秒前
Jingg完成签到,获得积分10
4秒前
Tony12发布了新的文献求助10
4秒前
yang完成签到 ,获得积分10
4秒前
白杨完成签到,获得积分10
5秒前
望北楼主完成签到,获得积分10
5秒前
无奈若雁完成签到,获得积分10
5秒前
明理发布了新的文献求助10
5秒前
思源应助Xinxxx采纳,获得10
5秒前
6秒前
zhangpeng完成签到,获得积分10
6秒前
Jc发布了新的文献求助20
6秒前
不安的白昼完成签到 ,获得积分10
7秒前
超级mxl完成签到,获得积分10
7秒前
cookerlin完成签到,获得积分20
7秒前
袁硕完成签到 ,获得积分10
7秒前
满意紫菜发布了新的文献求助10
7秒前
外侧人发布了新的文献求助10
7秒前
7秒前
wangz完成签到,获得积分20
9秒前
9秒前
10秒前
douzi完成签到,获得积分10
10秒前
Yziii举报luyao970131求助涉嫌违规
11秒前
斯文败类应助坚强的曼雁采纳,获得10
11秒前
julian190完成签到,获得积分10
11秒前
刻苦黎云完成签到,获得积分10
12秒前
哈哈哈发布了新的文献求助10
12秒前
13秒前
如一完成签到 ,获得积分10
14秒前
aa1212121完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147058
求助须知:如何正确求助?哪些是违规求助? 2798385
关于积分的说明 7828457
捐赠科研通 2454989
什么是DOI,文献DOI怎么找? 1306573
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565