亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BEAR: Revolutionizing Service Domain Knowledge Graph Construction with LLM

计算机科学 领域知识 领域(数学分析) 知识图 服务(商务) 图形 本体论 领域工程 数据科学 万维网 软件工程 知识管理 情报检索 理论计算机科学 程序设计语言 经济 哲学 软件系统 经济 基于构件的软件工程 数学分析 认识论 软件 数学
作者
Shuang Yu,Tao Huang,Mingyi Liu,Zhongjie Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 339-346 被引量:3
标识
DOI:10.1007/978-3-031-48421-6_23
摘要

Knowledge graph (KG), as a novel knowledge storage approach, has been widely used in various domains. In the service computing community, researchers tried to harness the enormous potential of KG to tackle domain-specific tasks. However, the lack of an openly available service domain KG limits the in-depth exploration of KGs in domain-specific applications. Building a service domain KG primarily faces two challenges: first, the diversity and complexity of service domain knowledge, and second, the dispersion of domain knowledge and the lack of annotated data. These challenges discouraged costly investment in large, high-quality domain-specific KGs by researchers. In this paper, we present the construction of a service domain KG called BEAR. We design a comprehensive service domain knowledge ontology to automatically generate the prompts for the Large Language Model (LLM) and employ LLM to implement a zero-shot method to extract high-quality knowledge. A series of experiments are conducted to demonstrate the feasibility of graph construction process and showcase the richness of content available from BEAR. Currently, BEAR includes 133, 906 nodes, 169, 159 relations, and about 424, 000 factual knowledge as attributes, which is available through github.com/HTXone/BEAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
FG发布了新的文献求助10
30秒前
33秒前
37秒前
tt完成签到,获得积分20
37秒前
tt发布了新的文献求助10
40秒前
ceeray23发布了新的文献求助30
41秒前
44秒前
ho应助科研通管家采纳,获得10
45秒前
ho应助科研通管家采纳,获得10
45秒前
kentonchow应助气945采纳,获得10
45秒前
52秒前
学术小菜鸟完成签到 ,获得积分10
52秒前
56秒前
ceeray23发布了新的文献求助20
57秒前
洁净的千凡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Alice发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Shawn发布了新的文献求助10
1分钟前
Alice完成签到,获得积分20
1分钟前
cao_bq完成签到,获得积分10
1分钟前
2分钟前
2分钟前
genius_yue发布了新的文献求助30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得10
2分钟前
2分钟前
hsj完成签到,获得积分10
3分钟前
genius_yue完成签到,获得积分10
3分钟前
3分钟前
潇洒的月光完成签到,获得积分10
3分钟前
3分钟前
cqhecq完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助Present采纳,获得10
3分钟前
kentonchow应助潇洒的月光采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827