亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LSTM time series NDVI prediction method incorporating climate elements: A case study of Yellow River Basin, China

归一化差异植被指数 多元统计 时间序列 系列(地层学) 环境科学 气候学 预测建模 人工神经网络 气候变化 计算机科学 气象学 机器学习 地理 地质学 古生物学 海洋学
作者
Yan Guo,Lifeng Zhang,Yi He,Shengpeng Cao,Hongzhe Li,Ling Ran,Yu‐Jie Ding,Mikalai Filonchyk
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:629: 130518-130518 被引量:19
标识
DOI:10.1016/j.jhydrol.2023.130518
摘要

Accurate prediction of the trend of Normalized Difference Vegetation Index (NDVI) time series in the Yellow River Basin (YRB) is crucial for the assessment of the hydrological and ecological environment in this region. Currently, the NDVI time series prediction model is primarily based on traditional models and single-variable neural network models. Nevertheless, these models present challenges in considering the limitations of multiple factors, causing the NDVI time series prediction results to lack reliability. To predict NDVI time-series in the YRB of China, this study constructed a multilayer multivariate Long-Short Term Memory (LSTM) neural network model including climatic components. The initial important climatic elements in this region were identified using GeoDetector. Then, the relationship between NDVI and climatic factors in the YRB of China is established. Finally, numerical scale data are used to train and predict a multilayer multivariate LSTM model with climatic components. According to the results, the three-layer multivariate LSTM neural network NDVI time series prediction model developed in this study has the best performance among the evaluated indices. When compared to existing time series prediction models, the proposed model in this study takes into account the common constraint effect of various climate factors on NDVI. This leads to a significantly improved prediction accuracy, presenting new opportunities for enhancing the prediction model. By analyzing the NDVI time series prediction outcomes for the YRB, it has been determined that the ecological environment of the area will continuously improve in the future. This study offers significant technological and theoretical backing for assessing the hydrological and ecological environment of the YRB and comparable ecologically vulnerable regions in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI6应助酷炫画板采纳,获得10
17秒前
科研通AI6应助酷炫画板采纳,获得10
31秒前
完美世界应助外星人采纳,获得10
46秒前
1分钟前
1分钟前
1分钟前
外星人发布了新的文献求助10
1分钟前
外星人完成签到,获得积分10
1分钟前
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
physicalproblem完成签到,获得积分10
2分钟前
2分钟前
酷炫画板发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
上官若男应助ceeray23采纳,获得20
3分钟前
3分钟前
Jarvis应助没有昵称采纳,获得10
3分钟前
Panther完成签到,获得积分10
3分钟前
酷炫画板发布了新的文献求助10
3分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
陆上飞完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432470
求助须知:如何正确求助?哪些是违规求助? 4545019
关于积分的说明 14195123
捐赠科研通 4464404
什么是DOI,文献DOI怎么找? 2447078
邀请新用户注册赠送积分活动 1438433
关于科研通互助平台的介绍 1415264