How Resilient is Privacy-preserving Machine Learning Towards Data-Driven Policy? Jakarta COVID-19 Patient Study Case

差别隐私 计算机科学 杠杆(统计) 政府(语言学) 互联网隐私 隐私政策 信息隐私 隐私软件 可信赖性 数据科学 计算机安全 机器学习 人工智能 数据挖掘 语言学 哲学
作者
Bahrul Ilmi Nasution,Yudhistira Nugraha,Irfan Dwiki Bhaswara,Muhammad Erza Aminanto
标识
DOI:10.1145/3605772.3624003
摘要

With the rise of personal data law in various countries, data privacy has recently become an essential issue. One of the well-known techniques used in overcoming privacy issues during analysis is differential privacy. However, many studies have shown that differential privacy decreased the machine learning model performance. It becomes problematic for any organization like the government to draw a policy from accurate insights from citizen statistics while maintaining citizen privacy. This study reviews differential privacy in machine learning algorithms and evaluates its performance on real COVID-19 patient data, using Jakarta, Indonesia as a case study. Besides that, we also validate our study with two additional datasets, the public Adult dataset from University of California, Irvine, and an Indonesia socioeconomic dataset. We find that using differential privacy tends to reduce accuracy and may lead to model failure in imbalanced data, particularly in more complex models such as random forests. The finding emphasizes differential privacy usage in government is practical for the trustworthy government but with distinct challenges. We discuss limitations and recommendations for any organization that works with personal data to leverage differential privacy in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Xian采纳,获得10
刚刚
橙子完成签到,获得积分10
2秒前
2秒前
顾矜应助loong采纳,获得10
5秒前
潜水读者发布了新的文献求助10
5秒前
6秒前
吃不胖的魔芋丝完成签到 ,获得积分10
7秒前
8秒前
落寞剑成完成签到 ,获得积分10
10秒前
mmmmm发布了新的文献求助10
11秒前
13秒前
15秒前
18秒前
轻松诗霜完成签到 ,获得积分10
18秒前
19秒前
20秒前
21秒前
汉堡包应助白桦林泪采纳,获得20
21秒前
21秒前
绿泡泡完成签到,获得积分10
23秒前
23秒前
这样很OK发布了新的文献求助10
24秒前
Rabbit发布了新的文献求助10
25秒前
蒙豆儿完成签到,获得积分10
25秒前
26秒前
蒙豆儿发布了新的文献求助10
27秒前
尊敬依珊发布了新的文献求助10
28秒前
HH完成签到,获得积分10
29秒前
30秒前
honest发布了新的文献求助30
31秒前
小二郎应助研友_Z7gWlZ采纳,获得10
31秒前
33秒前
万能图书馆应助wpx采纳,获得10
35秒前
36秒前
张雯思发布了新的文献求助10
37秒前
43秒前
43秒前
44秒前
孙燕应助小肉包采纳,获得10
45秒前
janie发布了新的文献求助10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176