How Resilient is Privacy-preserving Machine Learning Towards Data-Driven Policy? Jakarta COVID-19 Patient Study Case

差别隐私 计算机科学 杠杆(统计) 政府(语言学) 互联网隐私 隐私政策 信息隐私 隐私软件 可信赖性 数据科学 计算机安全 机器学习 人工智能 数据挖掘 语言学 哲学
作者
Bahrul Ilmi Nasution,Yudhistira Nugraha,Irfan Dwiki Bhaswara,Muhammad Erza Aminanto
标识
DOI:10.1145/3605772.3624003
摘要

With the rise of personal data law in various countries, data privacy has recently become an essential issue. One of the well-known techniques used in overcoming privacy issues during analysis is differential privacy. However, many studies have shown that differential privacy decreased the machine learning model performance. It becomes problematic for any organization like the government to draw a policy from accurate insights from citizen statistics while maintaining citizen privacy. This study reviews differential privacy in machine learning algorithms and evaluates its performance on real COVID-19 patient data, using Jakarta, Indonesia as a case study. Besides that, we also validate our study with two additional datasets, the public Adult dataset from University of California, Irvine, and an Indonesia socioeconomic dataset. We find that using differential privacy tends to reduce accuracy and may lead to model failure in imbalanced data, particularly in more complex models such as random forests. The finding emphasizes differential privacy usage in government is practical for the trustworthy government but with distinct challenges. We discuss limitations and recommendations for any organization that works with personal data to leverage differential privacy in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
我是站长才怪应助xg采纳,获得10
2秒前
decimalpoint完成签到 ,获得积分10
4秒前
Benliu发布了新的文献求助20
4秒前
4秒前
Carol完成签到,获得积分10
4秒前
sw98318发布了新的文献求助10
5秒前
wang1090完成签到,获得积分10
5秒前
奋斗的许婷2完成签到,获得积分10
5秒前
5秒前
6秒前
hll完成签到,获得积分20
6秒前
阳yang发布了新的文献求助10
6秒前
7秒前
wang1090发布了新的文献求助30
8秒前
呜呜呜呜完成签到,获得积分10
8秒前
8秒前
Riki发布了新的文献求助10
9秒前
88发布了新的文献求助10
9秒前
10秒前
充电宝应助zfy采纳,获得10
11秒前
sak完成签到,获得积分10
12秒前
Shuo Yang发布了新的文献求助20
12秒前
呜呜呜呜发布了新的文献求助10
12秒前
在水一方应助hhzz采纳,获得10
12秒前
旧是完成签到 ,获得积分10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
杨小胖完成签到 ,获得积分10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
mm发布了新的文献求助10
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
shouyu29应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
RC_Wang应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808