Defining predictors for successful mechanical ventilation weaning, using a data-mining process and artificial intelligence

断奶 过程(计算) 机械通风 计算机科学 数据挖掘 人工智能 医学 内科学 操作系统
作者
Juliette Menguy,Kahaia De Longeaux,Laetitia Bodénes,Baptiste Hourmant,Erwan L’Her
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-47452-7
摘要

Abstract Mechanical ventilation weaning within intensive care units (ICU) is a difficult process, while crucial when considering its impact on morbidity and mortality. Failed extubation and prolonged mechanical ventilation both carry a significant risk of adverse events. We aimed to determine predictive factors of extubation success using data-mining and artificial intelligence. A prospective physiological and biomedical signal data warehousing project. A 21-beds medical Intensive Care Unit of a University Hospital. Adult patients undergoing weaning from mechanical ventilation. Hemodynamic and respiratory parameters of mechanically ventilated patients were prospectively collected and combined with clinical outcome data. One hundred and eight patients were included, for 135 spontaneous breathing trials (SBT) allowing to identify physiological parameters either measured before or during the trial and considered as predictive for extubation success. The Early-Warning Score Oxygen (EWSO 2 ) enables to discriminate patients deemed to succeed extubation, at 72-h and 7-days. Cut-off values for EWSO2 (AUC = 0.80; Se = 0.75; Sp = 0.76), mean arterial pressure and heart-rate variability parameters were determined. A predictive model for extubation success was established including body-mass index (BMI) on inclusion, occlusion pressure at 0,1 s. (P0.1) and heart-rate analysis parameters (LF/HF) both measured before SBT, and heart rate during SBT (global performance 62%; 83%). The data-mining process enabled to detect independent predictive factors for extubation success and to develop a dynamic predictive model using artificial intelligence. Such predictive tools may help clinicians to better discriminate patients deemed to succeed extubation and thus improve clinical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liran12319完成签到,获得积分10
2秒前
2秒前
粗犷的沛容完成签到,获得积分10
2秒前
英姑应助江峰采纳,获得10
3秒前
4秒前
李爱国应助GS采纳,获得10
7秒前
qyr123456发布了新的文献求助10
8秒前
8秒前
am完成签到,获得积分10
9秒前
auraro完成签到 ,获得积分10
9秒前
学以致用发布了新的文献求助10
10秒前
爱吃玉米完成签到,获得积分10
10秒前
buno应助自知难明采纳,获得10
13秒前
13秒前
13秒前
14秒前
当人不浪发布了新的文献求助10
14秒前
14秒前
Faker完成签到 ,获得积分10
14秒前
慕青应助辛勤大白采纳,获得10
14秒前
Ava应助周茉采纳,获得10
15秒前
彭于晏应助罗博超采纳,获得10
15秒前
qinglingdao发布了新的文献求助10
15秒前
英俊的铭应助GY采纳,获得10
17秒前
北极光发布了新的文献求助10
18秒前
二二春完成签到,获得积分10
19秒前
田一发布了新的文献求助10
19秒前
雨过天晴发布了新的文献求助10
20秒前
清爽夜雪完成签到,获得积分10
20秒前
Frank应助张远幸采纳,获得10
21秒前
22秒前
二二春发布了新的文献求助10
22秒前
摸鱼硕士应助dominic12361采纳,获得10
25秒前
田一完成签到,获得积分10
26秒前
传奇3应助复杂的曼巧采纳,获得10
27秒前
周茉发布了新的文献求助10
27秒前
852应助微微采纳,获得10
29秒前
29秒前
北极光完成签到,获得积分10
30秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212510
求助须知:如何正确求助?哪些是违规求助? 2861446
关于积分的说明 8128656
捐赠科研通 2527386
什么是DOI,文献DOI怎么找? 1361023
科研通“疑难数据库(出版商)”最低求助积分说明 643421
邀请新用户注册赠送积分活动 615687