Defining predictors for successful mechanical ventilation weaning, using a data-mining process and artificial intelligence

断奶 过程(计算) 机械通风 计算机科学 数据挖掘 人工智能 医学 内科学 操作系统
作者
Juliette Menguy,Kahaia De Longeaux,Laetitia Bodénes,Baptiste Hourmant,Erwan L’Her
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-47452-7
摘要

Abstract Mechanical ventilation weaning within intensive care units (ICU) is a difficult process, while crucial when considering its impact on morbidity and mortality. Failed extubation and prolonged mechanical ventilation both carry a significant risk of adverse events. We aimed to determine predictive factors of extubation success using data-mining and artificial intelligence. A prospective physiological and biomedical signal data warehousing project. A 21-beds medical Intensive Care Unit of a University Hospital. Adult patients undergoing weaning from mechanical ventilation. Hemodynamic and respiratory parameters of mechanically ventilated patients were prospectively collected and combined with clinical outcome data. One hundred and eight patients were included, for 135 spontaneous breathing trials (SBT) allowing to identify physiological parameters either measured before or during the trial and considered as predictive for extubation success. The Early-Warning Score Oxygen (EWSO 2 ) enables to discriminate patients deemed to succeed extubation, at 72-h and 7-days. Cut-off values for EWSO2 (AUC = 0.80; Se = 0.75; Sp = 0.76), mean arterial pressure and heart-rate variability parameters were determined. A predictive model for extubation success was established including body-mass index (BMI) on inclusion, occlusion pressure at 0,1 s. (P0.1) and heart-rate analysis parameters (LF/HF) both measured before SBT, and heart rate during SBT (global performance 62%; 83%). The data-mining process enabled to detect independent predictive factors for extubation success and to develop a dynamic predictive model using artificial intelligence. Such predictive tools may help clinicians to better discriminate patients deemed to succeed extubation and thus improve clinical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马甲甲发布了新的文献求助10
1秒前
刘蒙完成签到,获得积分10
1秒前
充电宝应助溪风不渡采纳,获得10
2秒前
欧阳万仇完成签到,获得积分10
2秒前
2秒前
852应助甜美冥茗采纳,获得30
3秒前
wonderingria发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
天天都开心完成签到,获得积分10
5秒前
5秒前
挺喜欢你完成签到,获得积分10
5秒前
Chong完成签到,获得积分10
5秒前
微笑完成签到,获得积分10
6秒前
Mintkarla完成签到,获得积分10
6秒前
乐乐应助流动中的小孩采纳,获得10
6秒前
炸炸完成签到,获得积分10
6秒前
7秒前
DNase发布了新的文献求助10
7秒前
7秒前
huangqqk完成签到,获得积分10
7秒前
7秒前
彭于晏应助yyw采纳,获得10
8秒前
wangyup发布了新的文献求助10
8秒前
8秒前
8秒前
顾宇完成签到,获得积分10
8秒前
9秒前
传奇3应助wonderingria采纳,获得10
9秒前
Rondab应助Mintkarla采纳,获得10
11秒前
可爱的函函应助zhangyuyu采纳,获得10
11秒前
11秒前
PinKing完成签到 ,获得积分10
11秒前
自由的从梦完成签到,获得积分10
11秒前
小马甲应助大西瓜采纳,获得10
12秒前
顾宇发布了新的文献求助10
12秒前
wangyup完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011574
求助须知:如何正确求助?哪些是违规求助? 3551304
关于积分的说明 11308331
捐赠科研通 3285566
什么是DOI,文献DOI怎么找? 1811101
邀请新用户注册赠送积分活动 886780
科研通“疑难数据库(出版商)”最低求助积分说明 811638