Selecting Cover Images for Restaurant Reviews: AI vs. Wisdom of the Crowd

计算机科学 背景(考古学) 稀缺 封面(代数) 人工智能 领域(数学) 机器学习 利用 数据科学 万维网 计算机安全 古生物学 工程类 经济 生物 微观经济学 纯数学 机械工程 数学
作者
Warut Khern-am-nuai,Hyunji So,Maxime C. Cohen,Yossiri Adulyasak
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 330-349 被引量:18
标识
DOI:10.1287/msom.2021.0531
摘要

Problem definition: Restaurant review platforms, such as Yelp and TripAdvisor, routinely receive large numbers of photos in their review submissions. These photos provide significant value for users who seek to compare restaurants. In this context, the choice of cover images (i.e., representative photos of the restaurants) can greatly influence the level of user engagement on the platform. Unfortunately, selecting these images can be time consuming and often requires human intervention. At the same time, it is challenging to develop a systematic approach to assess the effectiveness of the selected images. Methodology/results: In this paper, we collaborate with a large review platform in Asia to investigate this problem. We discuss two image selection approaches, namely crowd-based and artificial intelligence (AI)-based systems. The AI-based system we use learns complex latent image features, which are further enhanced by transfer learning to overcome the scarcity of labeled data. We collaborate with the platform to deploy our AI-based system through a randomized field experiment to carefully compare both systems. We find that the AI-based system outperforms the crowd-based counterpart and boosts user engagement by 12.43%–16.05% on average. We then conduct empirical analyses on observational data to identify the underlying mechanisms that drive the superior performance of the AI-based system. Managerial implications: Finally, we infer from our findings that the AI-based system outperforms the crowd-based system for restaurants with (i) a longer tenure on the platform, (ii) a limited number of user-generated photos, (iii) a lower star rating, and (iv) lower user engagement during the crowd-based system. Funding: The authors acknowledge financial support from the Social Sciences and Humanities Research Council [Grant 430-2020-00106]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助An采纳,获得10
1秒前
科研通AI5应助hihi采纳,获得10
1秒前
芯止谭轩发布了新的文献求助10
1秒前
迷人秋烟应助卡卡采纳,获得160
2秒前
3秒前
秃头小宝贝完成签到,获得积分0
4秒前
Ray完成签到,获得积分10
5秒前
sober123发布了新的文献求助10
6秒前
7秒前
9秒前
科研通AI5应助LHL采纳,获得10
9秒前
羊羊羊发布了新的文献求助10
10秒前
10秒前
周志轩66完成签到,获得积分20
11秒前
13秒前
13秒前
香菜张完成签到,获得积分10
16秒前
cyx完成签到,获得积分10
16秒前
orange发布了新的文献求助10
16秒前
莽哥完成签到,获得积分10
17秒前
快乐的纸飞机完成签到 ,获得积分10
17秒前
大个应助LYT采纳,获得10
17秒前
hanleiharry1发布了新的文献求助10
24秒前
Jasper应助Yuan采纳,获得10
24秒前
25秒前
风趣过客发布了新的文献求助10
26秒前
瘦瘦小猫咪完成签到 ,获得积分10
26秒前
樊樊樊梵情完成签到,获得积分10
26秒前
shuoshuo完成签到 ,获得积分20
27秒前
27秒前
28秒前
Pengzhuhuai完成签到,获得积分10
28秒前
少一点丶天分完成签到,获得积分10
29秒前
慕青应助想要发文章采纳,获得10
32秒前
34秒前
所所应助hanleiharry1采纳,获得10
34秒前
aa发布了新的文献求助10
35秒前
36秒前
摩诃发布了新的文献求助10
37秒前
orange完成签到,获得积分10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735843
求助须知:如何正确求助?哪些是违规求助? 3279569
关于积分的说明 10016029
捐赠科研通 2996256
什么是DOI,文献DOI怎么找? 1643958
邀请新用户注册赠送积分活动 781635
科研通“疑难数据库(出版商)”最低求助积分说明 749423