Selecting Cover Images for Restaurant Reviews: AI vs. Wisdom of the Crowd

计算机科学 背景(考古学) 稀缺 封面(代数) 人工智能 领域(数学) 机器学习 利用 数据科学 万维网 计算机安全 古生物学 工程类 经济 生物 微观经济学 纯数学 机械工程 数学
作者
Warut Khern-am-nuai,Hyunji So,Maxime C. Cohen,Yossiri Adulyasak
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 330-349 被引量:24
标识
DOI:10.1287/msom.2021.0531
摘要

Problem definition: Restaurant review platforms, such as Yelp and TripAdvisor, routinely receive large numbers of photos in their review submissions. These photos provide significant value for users who seek to compare restaurants. In this context, the choice of cover images (i.e., representative photos of the restaurants) can greatly influence the level of user engagement on the platform. Unfortunately, selecting these images can be time consuming and often requires human intervention. At the same time, it is challenging to develop a systematic approach to assess the effectiveness of the selected images. Methodology/results: In this paper, we collaborate with a large review platform in Asia to investigate this problem. We discuss two image selection approaches, namely crowd-based and artificial intelligence (AI)-based systems. The AI-based system we use learns complex latent image features, which are further enhanced by transfer learning to overcome the scarcity of labeled data. We collaborate with the platform to deploy our AI-based system through a randomized field experiment to carefully compare both systems. We find that the AI-based system outperforms the crowd-based counterpart and boosts user engagement by 12.43%–16.05% on average. We then conduct empirical analyses on observational data to identify the underlying mechanisms that drive the superior performance of the AI-based system. Managerial implications: Finally, we infer from our findings that the AI-based system outperforms the crowd-based system for restaurants with (i) a longer tenure on the platform, (ii) a limited number of user-generated photos, (iii) a lower star rating, and (iv) lower user engagement during the crowd-based system. Funding: The authors acknowledge financial support from the Social Sciences and Humanities Research Council [Grant 430-2020-00106]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助晚棠采纳,获得10
1秒前
4秒前
4秒前
4秒前
4秒前
高兴的丝发布了新的文献求助10
4秒前
5秒前
思源应助好久不见采纳,获得10
6秒前
7秒前
cy发布了新的文献求助10
8秒前
dianrenzhe完成签到,获得积分20
8秒前
9秒前
xiajiahao完成签到,获得积分20
9秒前
Xenia发布了新的文献求助30
9秒前
传奇3应助Mercy采纳,获得10
9秒前
10秒前
11秒前
琪琪发布了新的文献求助10
11秒前
wang完成签到,获得积分20
13秒前
orbitvox完成签到,获得积分10
13秒前
14秒前
谦让寄容完成签到 ,获得积分10
15秒前
共享精神应助最初采纳,获得10
15秒前
Owen应助自由的心情采纳,获得20
15秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
ricardo完成签到,获得积分10
19秒前
浮游应助bafang采纳,获得10
21秒前
然然然后发布了新的文献求助10
21秒前
解语花发布了新的文献求助10
21秒前
wdddr发布了新的文献求助10
22秒前
23秒前
wssamuel完成签到 ,获得积分10
24秒前
浮游应助Mercy采纳,获得10
25秒前
25秒前
25秒前
丁震完成签到,获得积分20
25秒前
我是老大应助xiajiahao采纳,获得10
26秒前
26秒前
Starry发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4981977
求助须知:如何正确求助?哪些是违规求助? 4233837
关于积分的说明 13187551
捐赠科研通 4025466
什么是DOI,文献DOI怎么找? 2202250
邀请新用户注册赠送积分活动 1214585
关于科研通互助平台的介绍 1131014