Selecting Cover Images for Restaurant Reviews: AI vs. Wisdom of the Crowd

计算机科学 背景(考古学) 稀缺 封面(代数) 人工智能 领域(数学) 机器学习 利用 数据科学 万维网 计算机安全 古生物学 工程类 经济 生物 微观经济学 纯数学 机械工程 数学
作者
Warut Khern-am-nuai,Hyunji So,Maxime C. Cohen,Yossiri Adulyasak
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 330-349 被引量:12
标识
DOI:10.1287/msom.2021.0531
摘要

Problem definition: Restaurant review platforms, such as Yelp and TripAdvisor, routinely receive large numbers of photos in their review submissions. These photos provide significant value for users who seek to compare restaurants. In this context, the choice of cover images (i.e., representative photos of the restaurants) can greatly influence the level of user engagement on the platform. Unfortunately, selecting these images can be time consuming and often requires human intervention. At the same time, it is challenging to develop a systematic approach to assess the effectiveness of the selected images. Methodology/results: In this paper, we collaborate with a large review platform in Asia to investigate this problem. We discuss two image selection approaches, namely crowd-based and artificial intelligence (AI)-based systems. The AI-based system we use learns complex latent image features, which are further enhanced by transfer learning to overcome the scarcity of labeled data. We collaborate with the platform to deploy our AI-based system through a randomized field experiment to carefully compare both systems. We find that the AI-based system outperforms the crowd-based counterpart and boosts user engagement by 12.43%–16.05% on average. We then conduct empirical analyses on observational data to identify the underlying mechanisms that drive the superior performance of the AI-based system. Managerial implications: Finally, we infer from our findings that the AI-based system outperforms the crowd-based system for restaurants with (i) a longer tenure on the platform, (ii) a limited number of user-generated photos, (iii) a lower star rating, and (iv) lower user engagement during the crowd-based system. Funding: The authors acknowledge financial support from the Social Sciences and Humanities Research Council [Grant 430-2020-00106]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
riverhj发布了新的文献求助10
刚刚
刚刚
从从余余完成签到,获得积分10
1秒前
英俊的铭应助fleee采纳,获得10
1秒前
泡面加蛋发布了新的文献求助10
1秒前
2秒前
Jasper应助宋1234采纳,获得10
2秒前
2秒前
why完成签到,获得积分10
3秒前
Leoitch发布了新的文献求助10
4秒前
5秒前
5秒前
生如夏花发布了新的文献求助10
5秒前
领导范儿应助淡定小蜜蜂采纳,获得10
5秒前
高贵香完成签到,获得积分10
6秒前
Owen应助郑木木采纳,获得10
7秒前
从从余余发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
Timing完成签到,获得积分10
8秒前
燕祁发布了新的文献求助200
8秒前
维多利亚少年完成签到,获得积分10
8秒前
xbb0905发布了新的文献求助10
9秒前
9秒前
Jasper应助xuanqing采纳,获得10
9秒前
10秒前
丹妮发布了新的文献求助10
11秒前
11秒前
11秒前
阿争完成签到,获得积分10
11秒前
11秒前
Leoitch完成签到,获得积分10
12秒前
12秒前
甜甜玫瑰应助木子李采纳,获得10
12秒前
13秒前
13秒前
SAI完成签到 ,获得积分10
13秒前
安详可燕发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449