Selecting Cover Images for Restaurant Reviews: AI vs. Wisdom of the Crowd

计算机科学 背景(考古学) 稀缺 封面(代数) 人工智能 领域(数学) 机器学习 利用 数据科学 万维网 计算机安全 古生物学 工程类 经济 生物 微观经济学 纯数学 机械工程 数学
作者
Warut Khern-am-nuai,Hyunji So,Maxime C. Cohen,Yossiri Adulyasak
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (1): 330-349 被引量:18
标识
DOI:10.1287/msom.2021.0531
摘要

Problem definition: Restaurant review platforms, such as Yelp and TripAdvisor, routinely receive large numbers of photos in their review submissions. These photos provide significant value for users who seek to compare restaurants. In this context, the choice of cover images (i.e., representative photos of the restaurants) can greatly influence the level of user engagement on the platform. Unfortunately, selecting these images can be time consuming and often requires human intervention. At the same time, it is challenging to develop a systematic approach to assess the effectiveness of the selected images. Methodology/results: In this paper, we collaborate with a large review platform in Asia to investigate this problem. We discuss two image selection approaches, namely crowd-based and artificial intelligence (AI)-based systems. The AI-based system we use learns complex latent image features, which are further enhanced by transfer learning to overcome the scarcity of labeled data. We collaborate with the platform to deploy our AI-based system through a randomized field experiment to carefully compare both systems. We find that the AI-based system outperforms the crowd-based counterpart and boosts user engagement by 12.43%–16.05% on average. We then conduct empirical analyses on observational data to identify the underlying mechanisms that drive the superior performance of the AI-based system. Managerial implications: Finally, we infer from our findings that the AI-based system outperforms the crowd-based system for restaurants with (i) a longer tenure on the platform, (ii) a limited number of user-generated photos, (iii) a lower star rating, and (iv) lower user engagement during the crowd-based system. Funding: The authors acknowledge financial support from the Social Sciences and Humanities Research Council [Grant 430-2020-00106]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0531 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一川烟雨完成签到,获得积分10
刚刚
遇简完成签到,获得积分10
刚刚
1秒前
2秒前
我行我素发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
ark861023发布了新的文献求助10
2秒前
POPO完成签到 ,获得积分10
2秒前
无情的函完成签到,获得积分20
2秒前
3秒前
怡然雁凡完成签到,获得积分10
3秒前
火龙果发布了新的文献求助10
3秒前
泽泽完成签到,获得积分10
3秒前
未来完成签到,获得积分10
3秒前
鲸鲸发布了新的文献求助30
4秒前
4秒前
supertkeb完成签到,获得积分10
4秒前
羲和完成签到,获得积分10
4秒前
5秒前
Lucas应助刘岩松采纳,获得10
5秒前
5秒前
6秒前
xiaofan完成签到,获得积分20
6秒前
宋二庆完成签到,获得积分10
6秒前
6秒前
咸鱼好忙发布了新的文献求助30
7秒前
无情的函发布了新的文献求助10
7秒前
小巧吐司发布了新的文献求助10
7秒前
小王完成签到,获得积分10
7秒前
咖啡豆完成签到,获得积分10
7秒前
小吴完成签到,获得积分10
8秒前
潦草小狗完成签到,获得积分10
8秒前
8秒前
9秒前
神勇雨双完成签到,获得积分10
9秒前
9秒前
阿玉发布了新的文献求助10
9秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600