Multi-objective optimization study of driver's airbag parameters

安全气囊 拉丁超立方体抽样 计算机科学 模拟 灵敏度(控制系统) 压缩(物理) 加速度 结构工程 汽车工程 工程类 数学 材料科学 统计 蒙特卡罗方法 电子工程 物理 经典力学 复合材料
作者
Gui-Bin Sun,Song Chen,Shen Zhou,Jian-Chao Gan,Yunying Zhu
标识
DOI:10.1117/12.2689507
摘要

Build a driver side restraint system model of an SUV according to MPDB (50% overlapping progressive deformation barrier impact test on the front) working conditions. Evaluation of the system using the Thor 50M dummy revealed poor performance in terms of chest compression and neck tension Fz, both of which exceeded the requirements set by C-NCAP regulations. To address this issue, we utilized a high-dimensional multi-objective optimization technique to optimize the airbag design parameters. To optimize the dummy injury values, we conducted an analysis of each airbag parameter using the univariate test method. We studied the effect of each parameter on the injury values of the dummy's head, neck, and chest, and selected parameters that exhibited high sensitivity. Specifically, we selected the dummy chest compression, head HIC15, acumulative 3ms acceleration value of the head, and neck tension Fz as our optimization objectives. To perform the sampling simulation, we used uniform Latin hypercube sampling for the parameters. We constructed an agent model for the four optimization objectives using the response surface modeling method, followed by a high-dimensional multiobjective optimization. We substituted the local optimal solutions of the optimized airbag parameters into the simulation model to verify their effectiveness in improving the dummy injury values. The simulation results demonstrate that the optimized airbag parameters reduced the dummy's chest compression by 13.53%, head HIC15 by 31.28%, neck tension Fz by 30.41%, and acumulative 3ms acceleration value of the head by 19.76%. These improvements enhance the occupant protection provided by the restraint system. Our study shows that optimizing the airbag design parameters can provide new ideas and techniques to enhance vehicle safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得30
刚刚
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
小帅完成签到,获得积分10
1秒前
时尚猎豹完成签到,获得积分10
1秒前
3ilence发布了新的文献求助10
1秒前
1秒前
星先生完成签到 ,获得积分10
2秒前
王好让发布了新的文献求助10
3秒前
苗条的寄凡完成签到,获得积分20
3秒前
3秒前
客服小祥发布了新的文献求助10
3秒前
wanci应助邓娅琴采纳,获得100
5秒前
大白发布了新的文献求助10
5秒前
宋达发布了新的文献求助10
6秒前
慕青应助高大的易蓉采纳,获得10
6秒前
6秒前
kajimi完成签到,获得积分10
7秒前
7秒前
如意的雨琴完成签到 ,获得积分10
7秒前
8秒前
汉堡包应助想发sci采纳,获得10
8秒前
8秒前
张利双完成签到,获得积分10
9秒前
小王啵啵完成签到 ,获得积分10
9秒前
柚子茶茶茶完成签到,获得积分20
9秒前
科研通AI2S应助3ilence采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745