Penalized Flow Hypergraph Local Clustering

超图 最大值和最小值 聚类分析 计算机科学 数据挖掘 集合(抽象数据类型) 随机游动 节点(物理) 比例(比率) 算法 理论计算机科学 人工智能 数学 统计 离散数学 物理 结构工程 工程类 数学分析 量子力学 程序设计语言
作者
Hao Zhong,Yubo Zhang,Chenggang Yan,Zuxing Xuan,Ting Yu,Zhang Ji,Shihui Ying,Yue Gao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tkde.2023.3319019
摘要

In recent years, hypergraph analysis have attracted increasing attention due to their ability to model complex data correlation, with hypergraph clustering being one of the most important tasks. However, when the scale of hypergraph is large enough, clustering is difficult based on global consistency. Existing flow-based hypergraph local clustering methods have good theoretical cut improvements and runtime guarantees. However, these methods exhibit poor performance when the initial reference node set is small and are prone to causing the output set to shrink into a small subset, resulting in local minima. To address this issue, we propose the Penalized Flow Hypergraph Local Clustering(PFHLC) and provide new conductance guarantees and runtime analyses for our method. First, we use the random walk method to grow the initial seed set, and introduce the random walk information of nodes as penalized flow into the flow-based framework to optimize the output. Second, we propose a generalized objective function containing random walk information, which takes full advantage of the semi-supervised information of the target cluster to protect important nodes. This feature can avoid the local minima of previous flow-based methods. Importantly, our method is strongly-local and can run efficiently on large-scale hypergraphs. We contribute a real-world dataset and the experiments on real-world large-scale datasets show that PFHLC achieves the state-of-the-art significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
KYT应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
Hanoi347应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
Stella应助科研通管家采纳,获得10
1秒前
zzz应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
zw完成签到,获得积分10
3秒前
务实寄松发布了新的文献求助10
4秒前
orixero应助QinQin采纳,获得10
4秒前
mh完成签到,获得积分10
6秒前
Roman完成签到,获得积分10
6秒前
zmj完成签到,获得积分10
7秒前
yuy完成签到,获得积分20
7秒前
浮游应助wwaakk采纳,获得10
7秒前
浮雨微清发布了新的文献求助10
8秒前
优雅麦片发布了新的文献求助10
8秒前
8秒前
霜降发布了新的文献求助10
9秒前
10秒前
英俊的菲鹰完成签到,获得积分10
10秒前
Jasper应助yuy采纳,获得10
11秒前
12秒前
若ruofeng发布了新的文献求助30
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580794
求助须知:如何正确求助?哪些是违规求助? 4665572
关于积分的说明 14756655
捐赠科研通 4607084
什么是DOI,文献DOI怎么找? 2528118
邀请新用户注册赠送积分活动 1497448
关于科研通互助平台的介绍 1466379