清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Penalized Flow Hypergraph Local Clustering

超图 最大值和最小值 聚类分析 计算机科学 数据挖掘 集合(抽象数据类型) 随机游动 节点(物理) 比例(比率) 算法 理论计算机科学 人工智能 数学 统计 离散数学 物理 结构工程 工程类 数学分析 量子力学 程序设计语言
作者
Hao Zhong,Yubo Zhang,Chenggang Yan,Zuxing Xuan,Ting Yu,Zhang Ji,Shihui Ying,Yue Gao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tkde.2023.3319019
摘要

In recent years, hypergraph analysis have attracted increasing attention due to their ability to model complex data correlation, with hypergraph clustering being one of the most important tasks. However, when the scale of hypergraph is large enough, clustering is difficult based on global consistency. Existing flow-based hypergraph local clustering methods have good theoretical cut improvements and runtime guarantees. However, these methods exhibit poor performance when the initial reference node set is small and are prone to causing the output set to shrink into a small subset, resulting in local minima. To address this issue, we propose the Penalized Flow Hypergraph Local Clustering(PFHLC) and provide new conductance guarantees and runtime analyses for our method. First, we use the random walk method to grow the initial seed set, and introduce the random walk information of nodes as penalized flow into the flow-based framework to optimize the output. Second, we propose a generalized objective function containing random walk information, which takes full advantage of the semi-supervised information of the target cluster to protect important nodes. This feature can avoid the local minima of previous flow-based methods. Importantly, our method is strongly-local and can run efficiently on large-scale hypergraphs. We contribute a real-world dataset and the experiments on real-world large-scale datasets show that PFHLC achieves the state-of-the-art significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
困的晕福福完成签到 ,获得积分10
8秒前
Eins完成签到 ,获得积分10
15秒前
蝎子莱莱xth完成签到,获得积分10
22秒前
氢锂钠钾铷铯钫完成签到,获得积分10
28秒前
Square完成签到,获得积分10
32秒前
freyaaaaa应助科研通管家采纳,获得30
38秒前
科研通AI2S应助ceeray23采纳,获得20
40秒前
Xixi完成签到 ,获得积分10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
李健的小迷弟应助ceeray23采纳,获得20
2分钟前
2分钟前
希望天下0贩的0应助liwen采纳,获得10
2分钟前
2分钟前
klpkyx发布了新的文献求助10
2分钟前
klpkyx完成签到,获得积分10
2分钟前
2分钟前
liwen发布了新的文献求助10
2分钟前
DoctorTa发布了新的文献求助30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
DoctorTa完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分0
3分钟前
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
老迟到的友桃完成签到 ,获得积分10
4分钟前
开心惜梦完成签到,获得积分10
4分钟前
5分钟前
淡然觅荷完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554977
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656373
捐赠科研通 4581518
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503