Penalized Flow Hypergraph Local Clustering

超图 最大值和最小值 聚类分析 计算机科学 数据挖掘 集合(抽象数据类型) 随机游动 节点(物理) 比例(比率) 算法 理论计算机科学 人工智能 数学 统计 离散数学 物理 结构工程 工程类 数学分析 量子力学 程序设计语言
作者
Hao Zhong,Yubo Zhang,Chenggang Yan,Zuxing Xuan,Ting Yu,Zhang Ji,Shihui Ying,Yue Gao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:6
标识
DOI:10.1109/tkde.2023.3319019
摘要

In recent years, hypergraph analysis have attracted increasing attention due to their ability to model complex data correlation, with hypergraph clustering being one of the most important tasks. However, when the scale of hypergraph is large enough, clustering is difficult based on global consistency. Existing flow-based hypergraph local clustering methods have good theoretical cut improvements and runtime guarantees. However, these methods exhibit poor performance when the initial reference node set is small and are prone to causing the output set to shrink into a small subset, resulting in local minima. To address this issue, we propose the Penalized Flow Hypergraph Local Clustering(PFHLC) and provide new conductance guarantees and runtime analyses for our method. First, we use the random walk method to grow the initial seed set, and introduce the random walk information of nodes as penalized flow into the flow-based framework to optimize the output. Second, we propose a generalized objective function containing random walk information, which takes full advantage of the semi-supervised information of the target cluster to protect important nodes. This feature can avoid the local minima of previous flow-based methods. Importantly, our method is strongly-local and can run efficiently on large-scale hypergraphs. We contribute a real-world dataset and the experiments on real-world large-scale datasets show that PFHLC achieves the state-of-the-art significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助万刈采纳,获得10
1秒前
善学以致用应助Kelly采纳,获得10
2秒前
3秒前
qq1640564935完成签到,获得积分10
6秒前
迷路水蜜桃完成签到,获得积分10
6秒前
7秒前
追寻奄完成签到,获得积分10
7秒前
7秒前
LaInh应助青栞采纳,获得10
7秒前
8秒前
11秒前
冷静万言发布了新的文献求助10
11秒前
薰硝壤应助与一人同游采纳,获得30
11秒前
王王完成签到,获得积分10
13秒前
13秒前
Ava应助sungyoo采纳,获得10
14秒前
暮夏钟鼓应助wenbin采纳,获得10
15秒前
cn发布了新的文献求助10
16秒前
淡定从霜完成签到 ,获得积分10
16秒前
李小政完成签到,获得积分10
16秒前
xixi完成签到 ,获得积分10
17秒前
英俊的铭应助z123采纳,获得10
18秒前
科研萱萱发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
丘比特应助cn采纳,获得10
22秒前
22秒前
ljs发布了新的文献求助10
22秒前
支凤妖发布了新的文献求助10
26秒前
斯文败类应助axiao采纳,获得10
26秒前
刘洋发布了新的文献求助10
27秒前
魁梧的寻菡完成签到 ,获得积分10
27秒前
28秒前
英俊的铭应助忧虑的访梦采纳,获得10
28秒前
29秒前
呆航完成签到 ,获得积分10
30秒前
科研通AI2S应助淡淡的幻竹采纳,获得10
30秒前
fengyouyu发布了新的文献求助30
31秒前
Hkane完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076162
求助须知:如何正确求助?哪些是违规求助? 2729044
关于积分的说明 7507177
捐赠科研通 2377267
什么是DOI,文献DOI怎么找? 1260526
科研通“疑难数据库(出版商)”最低求助积分说明 611000
版权声明 597164