清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches

多光谱图像 人工神经网络 精准农业 分割 领域(数学) 人工智能 农业 深度学习 经济短缺 农业工程 机器学习 计算机科学 数学 地理 工程类 哲学 考古 语言学 纯数学 政府(语言学)
作者
Ivan S. Blekanov,Adam Molin,David Zhang,E. Mitrofanov,Olga А. Mitrofanova,Yin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108047-108047 被引量:21
标识
DOI:10.1016/j.compag.2023.108047
摘要

Effective nitrogen nutrition is vital for better crop yield. In order to get the maximum yield from a field, nutrition must be spread evenly among all crops. Therefore, this paper proposes a combination of deep learning image segmentation methods to monitor nutrition across an agricultural field and detect areas with shortages of nutrients. In particular, the authors consider the applicability of five state-of-the-art neural network architectures based on U-Net to solve the nitrogen level rate segmentation problem for crops on an orthophotomap. Training, effectiveness assessment, and applicability of these neural network models are carried out by the authors on their own multi-datasets, collected by using UAS (Geoscan 401) at the Agrophysical Research Institute (ARI) experimental biopolygon for 2020–2021. The survey was performed using a MicaSense RedEdge-MX multispectral camera (5 channels in total). The total size of the collected dataset is more than 20 thousand images of two different agricultural fields (with a total area of about 62 ha). On each field, there are six test areas with known nitrogen nutrition levels (founded by agronomists). Images of these test areas are used for data augmentation and training of the above-mentioned neural network models (U-Net, Attention U-Net, R2-UNet, Attention R2-Unet, and U-Net3+). Also, in this research, an experiment was conducted to evaluate the influence of the choice of different bands of field images on the accuracy of the considered segmentation methods. The experiment showed that among all models, Attention R2U-Net (t2) proved to be more robust and reliable for different kinds of crops (accuracy 97.59–99.96%). The authors also evaluated the impact of using different combinations of image bands (such as RGB, RedEdge, NearIR, and NDVI) on the segmentation accuracy of the neural network model. The combination of RGB, NearIR, and NDVI channels allowed for the high values of all 8 metrics used in this research (0.41–1.77% more than the standard combination of RGB bands). The use of the RedEdge band has a significant negative impact on the quality of segmentation of the nitrogen level in the agricultural field. The proposed method based on Attention R2U-Net (t2) and a combination of RGB, NearIR, and NDVI bands is stable for different types of agricultural landscapes and can help to improve crop nutrition and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuju完成签到,获得积分10
11秒前
Gydl完成签到,获得积分10
19秒前
简单完成签到 ,获得积分10
24秒前
36秒前
研友_nxw2xL完成签到,获得积分10
41秒前
muriel完成签到,获得积分0
47秒前
dream完成签到 ,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
1分钟前
lingling完成签到 ,获得积分10
1分钟前
1分钟前
yeye发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
追风完成签到,获得积分10
1分钟前
yeye完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
rayjin完成签到,获得积分10
2分钟前
苗苗完成签到 ,获得积分10
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
4分钟前
四氧化三铁完成签到,获得积分10
4分钟前
4分钟前
4分钟前
PeterLin完成签到,获得积分10
4分钟前
鲤鱼不言发布了新的文献求助10
4分钟前
5分钟前
虚心的飞鸟完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
不安的晓灵完成签到 ,获得积分10
7分钟前
紫熊完成签到,获得积分10
7分钟前
7分钟前
Nancy0818完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
zzz发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596614
求助须知:如何正确求助?哪些是违规求助? 4008465
关于积分的说明 12409239
捐赠科研通 3687520
什么是DOI,文献DOI怎么找? 2032461
邀请新用户注册赠送积分活动 1065692
科研通“疑难数据库(出版商)”最低求助积分说明 950996