亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches

多光谱图像 人工神经网络 精准农业 分割 领域(数学) 人工智能 农业 深度学习 经济短缺 农业工程 机器学习 计算机科学 数学 地理 工程类 语言学 哲学 考古 政府(语言学) 纯数学
作者
Ivan S. Blekanov,Adam Molin,David Zhang,E. Mitrofanov,Olga Mitrofanova,Yin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108047-108047 被引量:3
标识
DOI:10.1016/j.compag.2023.108047
摘要

Effective nitrogen nutrition is vital for better crop yield. In order to get the maximum yield from a field, nutrition must be spread evenly among all crops. Therefore, this paper proposes a combination of deep learning image segmentation methods to monitor nutrition across an agricultural field and detect areas with shortages of nutrients. In particular, the authors consider the applicability of five state-of-the-art neural network architectures based on U-Net to solve the nitrogen level rate segmentation problem for crops on an orthophotomap. Training, effectiveness assessment, and applicability of these neural network models are carried out by the authors on their own multi-datasets, collected by using UAS (Geoscan 401) at the Agrophysical Research Institute (ARI) experimental biopolygon for 2020–2021. The survey was performed using a MicaSense RedEdge-MX multispectral camera (5 channels in total). The total size of the collected dataset is more than 20 thousand images of two different agricultural fields (with a total area of about 62 ha). On each field, there are six test areas with known nitrogen nutrition levels (founded by agronomists). Images of these test areas are used for data augmentation and training of the above-mentioned neural network models (U-Net, Attention U-Net, R2-UNet, Attention R2-Unet, and U-Net3+). Also, in this research, an experiment was conducted to evaluate the influence of the choice of different bands of field images on the accuracy of the considered segmentation methods. The experiment showed that among all models, Attention R2U-Net (t2) proved to be more robust and reliable for different kinds of crops (accuracy 97.59–99.96%). The authors also evaluated the impact of using different combinations of image bands (such as RGB, RedEdge, NearIR, and NDVI) on the segmentation accuracy of the neural network model. The combination of RGB, NearIR, and NDVI channels allowed for the high values of all 8 metrics used in this research (0.41–1.77% more than the standard combination of RGB bands). The use of the RedEdge band has a significant negative impact on the quality of segmentation of the nitrogen level in the agricultural field. The proposed method based on Attention R2U-Net (t2) and a combination of RGB, NearIR, and NDVI bands is stable for different types of agricultural landscapes and can help to improve crop nutrition and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alanni完成签到 ,获得积分10
12秒前
orixero应助既然采纳,获得10
16秒前
cmq完成签到 ,获得积分10
17秒前
乐洋洋关注了科研通微信公众号
20秒前
gu关注了科研通微信公众号
20秒前
123456777完成签到 ,获得积分10
26秒前
xzx完成签到,获得积分10
29秒前
斯文败类应助freedom采纳,获得10
32秒前
33秒前
37秒前
44秒前
勇攀高峰的科研少女完成签到 ,获得积分10
46秒前
freedom发布了新的文献求助10
48秒前
研友_VZG7GZ应助freedom采纳,获得10
53秒前
58秒前
1分钟前
freedom发布了新的文献求助10
1分钟前
freedom完成签到,获得积分10
1分钟前
一分完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Ning发布了新的文献求助10
1分钟前
kingqjack发布了新的文献求助10
1分钟前
柏莉发布了新的文献求助10
1分钟前
葉鳳怡完成签到 ,获得积分10
1分钟前
DAWN发布了新的文献求助30
1分钟前
1分钟前
huanglu发布了新的文献求助10
1分钟前
yiyi131发布了新的文献求助20
2分钟前
可爱的函函应助依唔吁采纳,获得10
2分钟前
2分钟前
wangermazi完成签到,获得积分0
2分钟前
jinyy发布了新的文献求助10
2分钟前
艺术大师完成签到,获得积分10
2分钟前
压缩完成签到 ,获得积分10
2分钟前
隐形曼青应助艺术大师采纳,获得10
2分钟前
当时只道是寻常完成签到,获得积分10
2分钟前
kkk发布了新的文献求助30
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793553
关于积分的说明 7806847
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314