亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches

多光谱图像 人工神经网络 精准农业 分割 领域(数学) 人工智能 农业 深度学习 经济短缺 农业工程 机器学习 计算机科学 数学 地理 工程类 哲学 考古 语言学 纯数学 政府(语言学)
作者
Ivan S. Blekanov,Adam Molin,David Zhang,E. Mitrofanov,Olga А. Mitrofanova,Yin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108047-108047 被引量:21
标识
DOI:10.1016/j.compag.2023.108047
摘要

Effective nitrogen nutrition is vital for better crop yield. In order to get the maximum yield from a field, nutrition must be spread evenly among all crops. Therefore, this paper proposes a combination of deep learning image segmentation methods to monitor nutrition across an agricultural field and detect areas with shortages of nutrients. In particular, the authors consider the applicability of five state-of-the-art neural network architectures based on U-Net to solve the nitrogen level rate segmentation problem for crops on an orthophotomap. Training, effectiveness assessment, and applicability of these neural network models are carried out by the authors on their own multi-datasets, collected by using UAS (Geoscan 401) at the Agrophysical Research Institute (ARI) experimental biopolygon for 2020–2021. The survey was performed using a MicaSense RedEdge-MX multispectral camera (5 channels in total). The total size of the collected dataset is more than 20 thousand images of two different agricultural fields (with a total area of about 62 ha). On each field, there are six test areas with known nitrogen nutrition levels (founded by agronomists). Images of these test areas are used for data augmentation and training of the above-mentioned neural network models (U-Net, Attention U-Net, R2-UNet, Attention R2-Unet, and U-Net3+). Also, in this research, an experiment was conducted to evaluate the influence of the choice of different bands of field images on the accuracy of the considered segmentation methods. The experiment showed that among all models, Attention R2U-Net (t2) proved to be more robust and reliable for different kinds of crops (accuracy 97.59–99.96%). The authors also evaluated the impact of using different combinations of image bands (such as RGB, RedEdge, NearIR, and NDVI) on the segmentation accuracy of the neural network model. The combination of RGB, NearIR, and NDVI channels allowed for the high values of all 8 metrics used in this research (0.41–1.77% more than the standard combination of RGB bands). The use of the RedEdge band has a significant negative impact on the quality of segmentation of the nitrogen level in the agricultural field. The proposed method based on Attention R2U-Net (t2) and a combination of RGB, NearIR, and NDVI bands is stable for different types of agricultural landscapes and can help to improve crop nutrition and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sissiarno应助科研通管家采纳,获得30
8秒前
温柔板栗应助科研通管家采纳,获得10
8秒前
sissiarno应助科研通管家采纳,获得30
8秒前
1分钟前
堪冷之发布了新的文献求助30
1分钟前
科研通AI6应助堪冷之采纳,获得10
1分钟前
堪冷之完成签到,获得积分10
2分钟前
sissiarno应助科研通管家采纳,获得30
2分钟前
无用的老董西完成签到 ,获得积分10
2分钟前
3分钟前
weibo完成签到,获得积分10
3分钟前
3分钟前
sissiarno应助科研通管家采纳,获得30
4分钟前
yb完成签到,获得积分10
4分钟前
大羊完成签到 ,获得积分10
4分钟前
飞天大南瓜完成签到,获得积分10
4分钟前
寒梅恋雪完成签到 ,获得积分10
5分钟前
5分钟前
啊哒吸哇完成签到,获得积分10
5分钟前
称心如意完成签到 ,获得积分10
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
sissiarno应助科研通管家采纳,获得30
6分钟前
Allen完成签到,获得积分10
6分钟前
ahhah完成签到,获得积分20
6分钟前
Auralis完成签到 ,获得积分10
6分钟前
甜蜜发带完成签到 ,获得积分10
7分钟前
Criminology34发布了新的文献求助200
8分钟前
sissiarno应助科研通管家采纳,获得30
8分钟前
sissiarno应助科研通管家采纳,获得30
8分钟前
dxszing完成签到 ,获得积分10
8分钟前
少管我完成签到 ,获得积分10
8分钟前
喜悦的小土豆完成签到 ,获得积分10
9分钟前
开放素完成签到 ,获得积分0
9分钟前
鲤鱼山人完成签到 ,获得积分10
9分钟前
奇大大完成签到 ,获得积分10
9分钟前
香蕉觅云应助科研通管家采纳,获得10
10分钟前
sissiarno应助科研通管家采纳,获得40
10分钟前
NLJY完成签到,获得积分10
10分钟前
王洋完成签到 ,获得积分10
11分钟前
cjy完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292340
求助须知:如何正确求助?哪些是违规求助? 4442949
关于积分的说明 13830718
捐赠科研通 4326322
什么是DOI,文献DOI怎么找? 2374800
邀请新用户注册赠送积分活动 1370148
关于科研通互助平台的介绍 1334569