Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches

多光谱图像 人工神经网络 精准农业 分割 领域(数学) 人工智能 农业 深度学习 经济短缺 农业工程 机器学习 计算机科学 数学 地理 工程类 哲学 考古 语言学 纯数学 政府(语言学)
作者
Ivan S. Blekanov,Adam Molin,David Zhang,E. Mitrofanov,Olga Mitrofanova,Yin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108047-108047 被引量:3
标识
DOI:10.1016/j.compag.2023.108047
摘要

Effective nitrogen nutrition is vital for better crop yield. In order to get the maximum yield from a field, nutrition must be spread evenly among all crops. Therefore, this paper proposes a combination of deep learning image segmentation methods to monitor nutrition across an agricultural field and detect areas with shortages of nutrients. In particular, the authors consider the applicability of five state-of-the-art neural network architectures based on U-Net to solve the nitrogen level rate segmentation problem for crops on an orthophotomap. Training, effectiveness assessment, and applicability of these neural network models are carried out by the authors on their own multi-datasets, collected by using UAS (Geoscan 401) at the Agrophysical Research Institute (ARI) experimental biopolygon for 2020–2021. The survey was performed using a MicaSense RedEdge-MX multispectral camera (5 channels in total). The total size of the collected dataset is more than 20 thousand images of two different agricultural fields (with a total area of about 62 ha). On each field, there are six test areas with known nitrogen nutrition levels (founded by agronomists). Images of these test areas are used for data augmentation and training of the above-mentioned neural network models (U-Net, Attention U-Net, R2-UNet, Attention R2-Unet, and U-Net3+). Also, in this research, an experiment was conducted to evaluate the influence of the choice of different bands of field images on the accuracy of the considered segmentation methods. The experiment showed that among all models, Attention R2U-Net (t2) proved to be more robust and reliable for different kinds of crops (accuracy 97.59–99.96%). The authors also evaluated the impact of using different combinations of image bands (such as RGB, RedEdge, NearIR, and NDVI) on the segmentation accuracy of the neural network model. The combination of RGB, NearIR, and NDVI channels allowed for the high values of all 8 metrics used in this research (0.41–1.77% more than the standard combination of RGB bands). The use of the RedEdge band has a significant negative impact on the quality of segmentation of the nitrogen level in the agricultural field. The proposed method based on Attention R2U-Net (t2) and a combination of RGB, NearIR, and NDVI bands is stable for different types of agricultural landscapes and can help to improve crop nutrition and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
4秒前
4秒前
5秒前
科研通AI5应助无悔呀采纳,获得10
5秒前
5秒前
littlewhite关注了科研通微信公众号
6秒前
6秒前
零点起步完成签到,获得积分10
6秒前
慕青应助大力的含卉采纳,获得10
6秒前
善良过客发布了新的文献求助10
7秒前
7秒前
7秒前
dildil发布了新的文献求助10
7秒前
7秒前
hu970发布了新的文献求助10
8秒前
8秒前
王思鲁发布了新的文献求助30
8秒前
七个小矮人完成签到,获得积分10
9秒前
Aria完成签到,获得积分10
9秒前
感性的安露应助结实雪卉采纳,获得20
10秒前
零点起步发布了新的文献求助10
11秒前
故意的傲玉应助Ll采纳,获得10
11秒前
斯文败类应助xiuxiu_27采纳,获得10
11秒前
胖子完成签到,获得积分10
11秒前
王巧巧完成签到,获得积分10
11秒前
tangsuyun发布了新的文献求助10
12秒前
祝顺遂发布了新的文献求助10
12秒前
Seven发布了新的文献求助10
12秒前
土拨鼠完成签到 ,获得积分10
13秒前
邢夏之发布了新的文献求助10
13秒前
漂亮芹菜完成签到,获得积分10
13秒前
ZXH完成签到,获得积分10
13秒前
Evelyn完成签到 ,获得积分10
13秒前
习习应助sb采纳,获得10
14秒前
14秒前
14秒前
斯文败类应助liu采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759