Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches

多光谱图像 人工神经网络 精准农业 分割 领域(数学) 人工智能 农业 深度学习 经济短缺 农业工程 机器学习 计算机科学 数学 地理 工程类 语言学 哲学 考古 政府(语言学) 纯数学
作者
Ivan S. Blekanov,Adam Molin,David Zhang,E. Mitrofanov,Olga А. Mitrofanova,Yin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108047-108047 被引量:21
标识
DOI:10.1016/j.compag.2023.108047
摘要

Effective nitrogen nutrition is vital for better crop yield. In order to get the maximum yield from a field, nutrition must be spread evenly among all crops. Therefore, this paper proposes a combination of deep learning image segmentation methods to monitor nutrition across an agricultural field and detect areas with shortages of nutrients. In particular, the authors consider the applicability of five state-of-the-art neural network architectures based on U-Net to solve the nitrogen level rate segmentation problem for crops on an orthophotomap. Training, effectiveness assessment, and applicability of these neural network models are carried out by the authors on their own multi-datasets, collected by using UAS (Geoscan 401) at the Agrophysical Research Institute (ARI) experimental biopolygon for 2020–2021. The survey was performed using a MicaSense RedEdge-MX multispectral camera (5 channels in total). The total size of the collected dataset is more than 20 thousand images of two different agricultural fields (with a total area of about 62 ha). On each field, there are six test areas with known nitrogen nutrition levels (founded by agronomists). Images of these test areas are used for data augmentation and training of the above-mentioned neural network models (U-Net, Attention U-Net, R2-UNet, Attention R2-Unet, and U-Net3+). Also, in this research, an experiment was conducted to evaluate the influence of the choice of different bands of field images on the accuracy of the considered segmentation methods. The experiment showed that among all models, Attention R2U-Net (t2) proved to be more robust and reliable for different kinds of crops (accuracy 97.59–99.96%). The authors also evaluated the impact of using different combinations of image bands (such as RGB, RedEdge, NearIR, and NDVI) on the segmentation accuracy of the neural network model. The combination of RGB, NearIR, and NDVI channels allowed for the high values of all 8 metrics used in this research (0.41–1.77% more than the standard combination of RGB bands). The use of the RedEdge band has a significant negative impact on the quality of segmentation of the nitrogen level in the agricultural field. The proposed method based on Attention R2U-Net (t2) and a combination of RGB, NearIR, and NDVI bands is stable for different types of agricultural landscapes and can help to improve crop nutrition and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Clown发布了新的文献求助10
1秒前
GLORIA完成签到 ,获得积分10
1秒前
1秒前
芳芳子呀完成签到,获得积分10
1秒前
牛牛发布了新的文献求助10
2秒前
昨夜書发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
sx关闭了sx文献求助
3秒前
整齐芷文完成签到,获得积分10
4秒前
yellow完成签到,获得积分10
4秒前
小王完成签到 ,获得积分10
5秒前
jiying131发布了新的文献求助10
5秒前
luogan完成签到,获得积分10
5秒前
5秒前
何佳完成签到,获得积分10
6秒前
L1完成签到 ,获得积分10
7秒前
科研通AI5应助毛毛采纳,获得10
7秒前
7秒前
YBOH发布了新的文献求助10
7秒前
8秒前
8秒前
奋斗的珍发布了新的文献求助20
9秒前
粗犷的抽屉完成签到,获得积分10
9秒前
lllldjhdy完成签到 ,获得积分10
9秒前
爆米花应助ayayaya采纳,获得10
9秒前
笑羽完成签到,获得积分0
9秒前
10秒前
逃亡的小狗完成签到,获得积分10
10秒前
10秒前
zyx完成签到 ,获得积分10
10秒前
一次性过发布了新的文献求助10
10秒前
乐乐应助zly采纳,获得10
10秒前
11秒前
11秒前
宴之敖者完成签到,获得积分10
11秒前
轻风发布了新的文献求助10
11秒前
11秒前
归尘应助yuaasusanaann采纳,获得10
11秒前
小马甲应助七柒采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650