亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches

多光谱图像 人工神经网络 精准农业 分割 领域(数学) 人工智能 农业 深度学习 经济短缺 农业工程 机器学习 计算机科学 数学 地理 工程类 哲学 考古 语言学 纯数学 政府(语言学)
作者
Ivan S. Blekanov,Adam Molin,David Zhang,E. Mitrofanov,Olga А. Mitrofanova,Yin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108047-108047 被引量:21
标识
DOI:10.1016/j.compag.2023.108047
摘要

Effective nitrogen nutrition is vital for better crop yield. In order to get the maximum yield from a field, nutrition must be spread evenly among all crops. Therefore, this paper proposes a combination of deep learning image segmentation methods to monitor nutrition across an agricultural field and detect areas with shortages of nutrients. In particular, the authors consider the applicability of five state-of-the-art neural network architectures based on U-Net to solve the nitrogen level rate segmentation problem for crops on an orthophotomap. Training, effectiveness assessment, and applicability of these neural network models are carried out by the authors on their own multi-datasets, collected by using UAS (Geoscan 401) at the Agrophysical Research Institute (ARI) experimental biopolygon for 2020–2021. The survey was performed using a MicaSense RedEdge-MX multispectral camera (5 channels in total). The total size of the collected dataset is more than 20 thousand images of two different agricultural fields (with a total area of about 62 ha). On each field, there are six test areas with known nitrogen nutrition levels (founded by agronomists). Images of these test areas are used for data augmentation and training of the above-mentioned neural network models (U-Net, Attention U-Net, R2-UNet, Attention R2-Unet, and U-Net3+). Also, in this research, an experiment was conducted to evaluate the influence of the choice of different bands of field images on the accuracy of the considered segmentation methods. The experiment showed that among all models, Attention R2U-Net (t2) proved to be more robust and reliable for different kinds of crops (accuracy 97.59–99.96%). The authors also evaluated the impact of using different combinations of image bands (such as RGB, RedEdge, NearIR, and NDVI) on the segmentation accuracy of the neural network model. The combination of RGB, NearIR, and NDVI channels allowed for the high values of all 8 metrics used in this research (0.41–1.77% more than the standard combination of RGB bands). The use of the RedEdge band has a significant negative impact on the quality of segmentation of the nitrogen level in the agricultural field. The proposed method based on Attention R2U-Net (t2) and a combination of RGB, NearIR, and NDVI bands is stable for different types of agricultural landscapes and can help to improve crop nutrition and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangjun完成签到,获得积分10
35秒前
1分钟前
朴实凡英发布了新的文献求助30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
lixuebin完成签到 ,获得积分10
2分钟前
羞涩的寒松完成签到,获得积分10
2分钟前
FashionBoy应助周城采纳,获得10
3分钟前
3分钟前
周城发布了新的文献求助10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
Omni完成签到,获得积分10
3分钟前
周城完成签到,获得积分10
3分钟前
andrewyu完成签到,获得积分10
4分钟前
唐禹嘉完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
Kevin发布了新的文献求助10
6分钟前
lessismore发布了新的文献求助10
6分钟前
HYQ关闭了HYQ文献求助
7分钟前
CodeCraft应助科研通管家采纳,获得10
7分钟前
小蘑菇应助科研通管家采纳,获得10
7分钟前
Kevin完成签到,获得积分10
7分钟前
Benhnhk21完成签到,获得积分10
7分钟前
漂亮的秋天完成签到 ,获得积分10
8分钟前
yummm完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
核桃应助不安的靖柔采纳,获得10
8分钟前
核桃应助不安的靖柔采纳,获得10
9分钟前
不安的靖柔完成签到,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
whj完成签到 ,获得积分10
12分钟前
12分钟前
迟梦琪发布了新的文献求助10
13分钟前
HYQ发布了新的文献求助10
13分钟前
迟梦琪完成签到,获得积分20
13分钟前
三世完成签到 ,获得积分10
13分钟前
gszy1975完成签到,获得积分10
13分钟前
13分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127315
求助须知:如何正确求助?哪些是违规求助? 4330387
关于积分的说明 13493316
捐赠科研通 4165992
什么是DOI,文献DOI怎么找? 2283701
邀请新用户注册赠送积分活动 1284720
关于科研通互助平台的介绍 1224730