Spatial convolutional self-attention-based transformer module for strawberry disease identification under complex background

人工智能 计算机科学 模式识别(心理学) 特征提取 机器学习 草莓 生物 园艺
作者
Gaoqiang Li,Lin Jiao,Youzhi Zhang,Kang Liu,Rujing Wang,Shifeng Dong,Chenrui Kang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108121-108121
标识
DOI:10.1016/j.compag.2023.108121
摘要

The occurrence of strawberry diseases has a huge impact on the yield and quality of strawberry fruits, resulting in huge economic losses. Real-time and effective identification and diagnosis of strawberry disease is an essential step for strawberry disease prevention. Machine learning-based methods are widely used in strawberry disease identification tasks, but these methods require expertise to design proper strawberry disease feature descriptors. Deep-learning methods have remarkably improved the capability of feature extraction. However, the strawberry disease with complex backgrounds brings great challenges for accurate feature extraction, which leads to poor recognition results of strawberry disease under complex backgrounds. In this paper, an improved transformer-based strawberry disease identification method is proposed to achieve precise and fast recognition of multiple classes of strawberry diseases. First, a multi-classes strawberry disease dataset has been constructed with 5369 images and 12 types of common strawberry disease. To increase the diversity of samples under complex backgrounds, various data augmentation strategies are introduced into the strawberry disease recognition method. Then, Multi-Head Self-Attention (MSA) is used to capture feature dependencies over long distances of strawberry disease images by leveraging the self-attention mechanism. To improve the recognition efficiency, the spatial convolutional self-attention-based transformer (SCSA-Transformer) is proposed to reduce the parameters of the transformer network. The experimental results validated on the constructed strawberry disease dataset demonstrate that the recognition accuracy of the proposed method can achieve 99.10%, which outperforms other methods. Besides, we also observe that the parameters of the classification model are reduced compared with other methods, which effectively improves the recognition efficiency of strawberry diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Ycun完成签到 ,获得积分10
4秒前
不萌发布了新的文献求助10
6秒前
深情安青应助大力雨柏采纳,获得10
6秒前
7秒前
尺八发布了新的文献求助30
7秒前
7秒前
天天快乐应助frank采纳,获得10
7秒前
蘑菇xixi完成签到,获得积分10
7秒前
cxxxx完成签到,获得积分10
8秒前
non发布了新的文献求助10
8秒前
我的文献完成签到,获得积分10
8秒前
夏天凉茶发布了新的文献求助10
9秒前
9秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
毛豆应助科研通管家采纳,获得10
10秒前
fcf335gj应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
不将就1345应助科研通管家采纳,获得30
10秒前
失眠双双应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得30
10秒前
fcf335gj应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
我的文献发布了新的文献求助10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
NikiJu完成签到,获得积分10
11秒前
失眠双双应助科研通管家采纳,获得10
11秒前
12秒前
fcf335gj应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
斯文败类应助Xin采纳,获得10
12秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239