Spatial convolutional self-attention-based transformer module for strawberry disease identification under complex background

人工智能 计算机科学 模式识别(心理学) 特征提取 机器学习 草莓 植物病害 生物 生物技术 园艺
作者
Gaoqiang Li,Lin Jiao,Peng Chen,Kang Liu,Rujing Wang,Shifeng Dong,Chenrui Kang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108121-108121 被引量:20
标识
DOI:10.1016/j.compag.2023.108121
摘要

The occurrence of strawberry diseases has a huge impact on the yield and quality of strawberry fruits, resulting in huge economic losses. Real-time and effective identification and diagnosis of strawberry disease is an essential step for strawberry disease prevention. Machine learning-based methods are widely used in strawberry disease identification tasks, but these methods require expertise to design proper strawberry disease feature descriptors. Deep-learning methods have remarkably improved the capability of feature extraction. However, the strawberry disease with complex backgrounds brings great challenges for accurate feature extraction, which leads to poor recognition results of strawberry disease under complex backgrounds. In this paper, an improved transformer-based strawberry disease identification method is proposed to achieve precise and fast recognition of multiple classes of strawberry diseases. First, a multi-classes strawberry disease dataset has been constructed with 5369 images and 12 types of common strawberry disease. To increase the diversity of samples under complex backgrounds, various data augmentation strategies are introduced into the strawberry disease recognition method. Then, Multi-Head Self-Attention (MSA) is used to capture feature dependencies over long distances of strawberry disease images by leveraging the self-attention mechanism. To improve the recognition efficiency, the spatial convolutional self-attention-based transformer (SCSA-Transformer) is proposed to reduce the parameters of the transformer network. The experimental results validated on the constructed strawberry disease dataset demonstrate that the recognition accuracy of the proposed method can achieve 99.10%, which outperforms other methods. Besides, we also observe that the parameters of the classification model are reduced compared with other methods, which effectively improves the recognition efficiency of strawberry diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LWJ发布了新的文献求助10
1秒前
2秒前
大反应釜完成签到,获得积分10
2秒前
TT发布了新的文献求助10
5秒前
Jenny发布了新的文献求助10
7秒前
7秒前
完美凝竹发布了新的文献求助10
7秒前
我是站长才怪应助细腻沅采纳,获得10
8秒前
JG完成签到 ,获得积分10
8秒前
hhh完成签到,获得积分20
8秒前
科研通AI5应助想瘦的海豹采纳,获得10
9秒前
随性完成签到 ,获得积分10
9秒前
自由的信仰完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
夏夏发布了新的文献求助10
14秒前
打打应助Hangerli采纳,获得10
16秒前
完美凝竹完成签到,获得积分10
17秒前
zfzf0422发布了新的文献求助10
18秒前
蜘蛛道理完成签到 ,获得积分10
18秒前
冷傲迎梦发布了新的文献求助10
19秒前
852应助MEME采纳,获得10
19秒前
Godzilla发布了新的文献求助10
19秒前
大模型应助咕噜仔采纳,获得10
20秒前
蒋时晏应助pharmstudent采纳,获得30
20秒前
21秒前
忘羡222发布了新的文献求助20
22秒前
魏伯安发布了新的文献求助10
22秒前
23秒前
不爱吃糖完成签到,获得积分10
23秒前
24秒前
balabala发布了新的文献求助10
25秒前
睿123456完成签到,获得积分10
26秒前
此话当真完成签到,获得积分10
27秒前
29秒前
慕青应助wmmm采纳,获得10
30秒前
科研通AI2S应助夏夏采纳,获得10
30秒前
隐形曼青应助夏夏采纳,获得10
30秒前
睿123456发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824