锐化
高光谱成像
人工智能
计算机科学
变压器
计算机视觉
工程类
电气工程
电压
作者
Lihui Chen,Gemine Vivone,Jiayi Qin,Jocelyn Chanussot,Xiaomin Yang
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-15
被引量:1
标识
DOI:10.1109/tnnls.2023.3297319
摘要
Convolutional neural networks (CNNs) have recently achieved outstanding performance for hyperspectral (HS) and multispectral (MS) image fusion. However, CNNs cannot explore the long-range dependence for HS and MS image fusion because of their local receptive fields. To overcome this limitation, a transformer is proposed to leverage the long-range dependence from the network inputs. Because of the ability of long-range modeling, the transformer overcomes the sole CNN on many tasks, whereas its use for HS and MS image fusion is still unexplored. In this article, we propose a spectral-spatial transformer (SST) to show the potentiality of transformers for HS and MS image fusion. We devise first two branches to extract spectral and spatial features in the HS and MS images by SST blocks, which can explore the spectral and spatial long-range dependence, respectively. Afterward, spectral and spatial features are fused feeding the result back to spectral and spatial branches for information interaction. Finally, the high-resolution (HR) HS image is reconstructed by dense links from all the fused features to make full use of them. The experimental analysis demonstrates the high performance of the proposed approach compared with some state-of-the-art (SOTA) methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI