An intelligent model to predict the mechanical properties of defected concrete drainage pipes

平均绝对百分比误差 粒子群优化 均方误差 遗传算法 支持向量机 体积热力学 管道(软件) 超参数优化 结构工程 算法 材料科学 工程类 计算机科学 数学 人工智能 统计 机器学习 机械工程 物理 量子力学
作者
Kangjian Yang,Hongyuan Fang,Hongjin Liu,Bin Li,Xijun Zhang,Yangyang Xia,Kejie Zhai
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:260: 108665-108665 被引量:5
标识
DOI:10.1016/j.ijmecsci.2023.108665
摘要

Corrosion and cracks are common issues in drainage pipelines. To investigate the mechanical properties of pipes with defects, a series of pipeline bearing capacity tests were carried out. In addition, a prediction model using a combination of self-organizing maps, genetic algorithms, and support vector machines (SOM-GA-SVM) was developed to predict the bearing capacity and circumferential strain of the pipeline. The prediction results obtained using this model were compared with those obtained using three other optimization algorithms. Furthermore, the influence of loading speed and defect volume on the prediction accuracy of the model was analyzed. The results indicated that the MAPE of the prediction results was less than 7%, the RMSE was less than 8, and the R2 was greater than 0.98; Additionally, the prediction accuracy of the SOM-GA algorithm was significantly higher than that of the genetic algorithm, particle swarm optimization algorithm, and grid search method; It was found that removing the loading speed from the variables and changing the defect depth and width to defect volume can improve the prediction accuracy of the model. After removing the loading speed, the average MAPE and average RMSE of the prediction model were reduced by 7.357% and 8.385%, respectively. After changing the defect depth and width to defect volume, the average MAPE and average RMSE of the prediction model were reduced by 4.925% and 5.054%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lifescience1发布了新的文献求助30
刚刚
1秒前
2秒前
Apocalypse_zjz完成签到,获得积分10
5秒前
5秒前
Zhy发布了新的文献求助10
7秒前
8秒前
11秒前
11秒前
12秒前
12秒前
Zhy完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
16秒前
liuyan432完成签到,获得积分10
17秒前
专注半烟完成签到 ,获得积分10
18秒前
shenghaowen完成签到,获得积分10
18秒前
18秒前
orchid完成签到,获得积分10
18秒前
cuizaixu发布了新的文献求助10
18秒前
robi发布了新的文献求助10
18秒前
20秒前
大模型应助小董继续努力采纳,获得10
20秒前
yuyuyuyuyuyuyu完成签到,获得积分10
20秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
chillin应助科研通管家采纳,获得10
21秒前
桂花乌龙应助科研通管家采纳,获得10
21秒前
Nina应助科研通管家采纳,获得30
21秒前
InfoNinja应助科研通管家采纳,获得30
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
InfoNinja应助科研通管家采纳,获得30
21秒前
研友_850EYZ发布了新的文献求助10
22秒前
24秒前
令狐磬发布了新的文献求助10
25秒前
25秒前
赘婿应助曹志毅采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825