An intelligent model to predict the mechanical properties of defected concrete drainage pipes

平均绝对百分比误差 粒子群优化 均方误差 遗传算法 支持向量机 体积热力学 管道(软件) 超参数优化 结构工程 算法 材料科学 工程类 计算机科学 数学 人工智能 统计 机器学习 机械工程 物理 量子力学
作者
Kangjian Yang,Hongyuan Fang,Hongjin Liu,Bin Li,Xijun Zhang,Yangyang Xia,Kejie Zhai
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:260: 108665-108665 被引量:5
标识
DOI:10.1016/j.ijmecsci.2023.108665
摘要

Corrosion and cracks are common issues in drainage pipelines. To investigate the mechanical properties of pipes with defects, a series of pipeline bearing capacity tests were carried out. In addition, a prediction model using a combination of self-organizing maps, genetic algorithms, and support vector machines (SOM-GA-SVM) was developed to predict the bearing capacity and circumferential strain of the pipeline. The prediction results obtained using this model were compared with those obtained using three other optimization algorithms. Furthermore, the influence of loading speed and defect volume on the prediction accuracy of the model was analyzed. The results indicated that the MAPE of the prediction results was less than 7%, the RMSE was less than 8, and the R2 was greater than 0.98; Additionally, the prediction accuracy of the SOM-GA algorithm was significantly higher than that of the genetic algorithm, particle swarm optimization algorithm, and grid search method; It was found that removing the loading speed from the variables and changing the defect depth and width to defect volume can improve the prediction accuracy of the model. After removing the loading speed, the average MAPE and average RMSE of the prediction model were reduced by 7.357% and 8.385%, respectively. After changing the defect depth and width to defect volume, the average MAPE and average RMSE of the prediction model were reduced by 4.925% and 5.054%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Can完成签到,获得积分10
刚刚
刚刚
参上发布了新的文献求助10
1秒前
叫滚滚发布了新的文献求助10
1秒前
xiaowu发布了新的文献求助10
1秒前
Yara.H完成签到 ,获得积分10
1秒前
马佳凯发布了新的文献求助10
1秒前
2秒前
自由的明雪完成签到,获得积分10
2秒前
拼死拼活完成签到 ,获得积分10
3秒前
留胡子的煎饼完成签到 ,获得积分10
4秒前
万能图书馆应助通~采纳,获得10
4秒前
4秒前
赘婿应助大力的含卉采纳,获得30
5秒前
Mumu完成签到,获得积分10
5秒前
5秒前
刘老师关注了科研通微信公众号
5秒前
小赞芽发布了新的文献求助10
5秒前
6秒前
6秒前
xiaowu完成签到,获得积分10
6秒前
织诗成锦完成签到,获得积分10
7秒前
科研通AI5应助文艺水蜜桃采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助BILNQPL采纳,获得10
8秒前
流白完成签到,获得积分10
8秒前
8秒前
Yolo完成签到,获得积分20
8秒前
YY应助胖豆采纳,获得10
9秒前
9秒前
jagger发布了新的文献求助10
9秒前
9秒前
10秒前
ChemistryZyh完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
充电宝应助朴素的士晋采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762