已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differentiating Between Alzheimer’s Disease and Frontotemporal Dementia Based on the Resting-State Multilayer EEG Network

失智症 脑电图 心理学 痴呆 听力学 静息状态功能磁共振成像 阿尔茨海默病 疾病 神经科学 医学 内科学
作者
Yajing Si,Runyang He,Lin Jiang,Dezhong Yao,Hongxing Zhang,Peng Xu,Xuntai Ma,Liang Yu,Fali Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 4521-4527 被引量:9
标识
DOI:10.1109/tnsre.2023.3329174
摘要

Frontotemporal dementia (FTD) is frequently misdiagnosed as Alzheimer's disease (AD) due to similar clinical symptoms. In this study, we constructed frequency-based multilayer resting-state electroencephalogram (EEG) networks and extracted representative network features to improve the differentiation between AD and FTD. When compared with healthy controls (HC), AD showed primarily stronger delta-alpha cross-couplings and weaker theta-sigma cross-couplings. Notably, when comparing the AD and FTD groups, we found that the AD exhibited stronger delta-alpha and delta-beta connectivity than the FTD. Thereafter, by extracting the representative network features and then applying these features in the classification between AD and FTD, an accuracy of 81.1% was achieved. Finally, a multivariable linear regressive model was built, based on the differential topologies, and then adopted to predict the scores of the Mini-Mental State Examination (MMSE) scale. Accordingly, the predicted and actual measured scores were indeed significantly correlated with each other ( r = 0.274, p = 0.036). These findings consistently suggest that frequency-based multilayer resting-state networks can be utilized for classifying AD and FTD and have potential applications for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
cherrychou完成签到,获得积分10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
浮浮世世应助科研通管家采纳,获得30
3秒前
打打应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
浮浮世世应助科研通管家采纳,获得30
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
风中问晴发布了新的文献求助10
5秒前
迅速泽洋发布了新的文献求助10
5秒前
6秒前
CXS发布了新的文献求助10
6秒前
8秒前
秀丽的短靴完成签到,获得积分10
8秒前
所所应助吉良吉影采纳,获得10
10秒前
samantha817完成签到,获得积分10
10秒前
JamesPei应助长情火龙果采纳,获得10
11秒前
12秒前
13秒前
唠叨的无敌完成签到 ,获得积分20
13秒前
氢氧化钠Li完成签到,获得积分10
14秒前
朱庆柯发布了新的文献求助10
17秒前
18秒前
zsc发布了新的文献求助20
19秒前
19秒前
szj发布了新的文献求助10
19秒前
iidae完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422