Differentiating Between Alzheimer’s Disease and Frontotemporal Dementia Based on the Resting-State Multilayer EEG Network

失智症 脑电图 心理学 痴呆 听力学 静息状态功能磁共振成像 阿尔茨海默病 疾病 神经科学 医学 内科学
作者
Yajing Si,Runyang He,Lin Jiang,Dezhong Yao,Hongxing Zhang,Peng Xu,Xuntai Ma,Liang Yu,Fali Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 4521-4527 被引量:9
标识
DOI:10.1109/tnsre.2023.3329174
摘要

Frontotemporal dementia (FTD) is frequently misdiagnosed as Alzheimer's disease (AD) due to similar clinical symptoms. In this study, we constructed frequency-based multilayer resting-state electroencephalogram (EEG) networks and extracted representative network features to improve the differentiation between AD and FTD. When compared with healthy controls (HC), AD showed primarily stronger delta-alpha cross-couplings and weaker theta-sigma cross-couplings. Notably, when comparing the AD and FTD groups, we found that the AD exhibited stronger delta-alpha and delta-beta connectivity than the FTD. Thereafter, by extracting the representative network features and then applying these features in the classification between AD and FTD, an accuracy of 81.1% was achieved. Finally, a multivariable linear regressive model was built, based on the differential topologies, and then adopted to predict the scores of the Mini-Mental State Examination (MMSE) scale. Accordingly, the predicted and actual measured scores were indeed significantly correlated with each other ( r = 0.274, p = 0.036). These findings consistently suggest that frequency-based multilayer resting-state networks can be utilized for classifying AD and FTD and have potential applications for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kathy完成签到,获得积分10
1秒前
ypp发布了新的文献求助10
1秒前
南兮发布了新的文献求助10
1秒前
thisky完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
松谦发布了新的文献求助10
2秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
yar应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
朱建军应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
自觉灵凡发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
朱建军应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
orixero应助lw采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
昏睡的蟠桃应助姣妹崽采纳,获得50
5秒前
yar应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
916应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
CR7应助科研通管家采纳,获得20
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635