Differentiating Between Alzheimer’s Disease and Frontotemporal Dementia Based on the Resting-State Multilayer EEG Network

失智症 脑电图 心理学 痴呆 听力学 静息状态功能磁共振成像 阿尔茨海默病 疾病 神经科学 医学 内科学
作者
Yajing Si,Runyang He,Lin Jiang,Dezhong Yao,Hongxing Zhang,Peng Xu,Xuntai Ma,Liang Yu,Fali Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 4521-4527 被引量:9
标识
DOI:10.1109/tnsre.2023.3329174
摘要

Frontotemporal dementia (FTD) is frequently misdiagnosed as Alzheimer's disease (AD) due to similar clinical symptoms. In this study, we constructed frequency-based multilayer resting-state electroencephalogram (EEG) networks and extracted representative network features to improve the differentiation between AD and FTD. When compared with healthy controls (HC), AD showed primarily stronger delta-alpha cross-couplings and weaker theta-sigma cross-couplings. Notably, when comparing the AD and FTD groups, we found that the AD exhibited stronger delta-alpha and delta-beta connectivity than the FTD. Thereafter, by extracting the representative network features and then applying these features in the classification between AD and FTD, an accuracy of 81.1% was achieved. Finally, a multivariable linear regressive model was built, based on the differential topologies, and then adopted to predict the scores of the Mini-Mental State Examination (MMSE) scale. Accordingly, the predicted and actual measured scores were indeed significantly correlated with each other ( r = 0.274, p = 0.036). These findings consistently suggest that frequency-based multilayer resting-state networks can be utilized for classifying AD and FTD and have potential applications for clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊雪曼发布了新的文献求助10
1秒前
nana发布了新的文献求助10
2秒前
2秒前
英俊的铭应助阿修罗采纳,获得10
2秒前
臧为发布了新的文献求助10
2秒前
吴彦祖发布了新的文献求助10
2秒前
科研通AI6应助葡萄夹子采纳,获得10
3秒前
3秒前
3秒前
5秒前
5秒前
科研通AI6应助哈哈哈采纳,获得10
5秒前
搜集达人应助高挑的鑫磊采纳,获得10
5秒前
52Hertz发布了新的文献求助10
5秒前
5秒前
打打应助EeeYiz采纳,获得10
5秒前
6秒前
6秒前
7秒前
感动白开水完成签到,获得积分10
8秒前
9秒前
Ziyi_Xu发布了新的文献求助10
9秒前
178应助顺其自然_666888采纳,获得10
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
即将高产sci完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
娜子完成签到,获得积分10
14秒前
嘿嘿发布了新的文献求助10
15秒前
lllxxx发布了新的文献求助10
16秒前
17秒前
阿修罗发布了新的文献求助10
17秒前
shhoing应助即将高产sci采纳,获得10
18秒前
Hello应助健康的幻珊采纳,获得30
18秒前
自自自在发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537501
求助须知:如何正确求助?哪些是违规求助? 4624968
关于积分的说明 14594101
捐赠科研通 4565491
什么是DOI,文献DOI怎么找? 2502427
邀请新用户注册赠送积分活动 1481018
关于科研通互助平台的介绍 1452211