材料科学
异质结
阳极
锂(药物)
电化学
纳米颗粒
碳纤维
化学工程
电池(电)
离子
过渡金属
纳米技术
电极
光电子学
催化作用
物理化学
复合材料
热力学
化学
复合数
医学
功率(物理)
物理
工程类
内分泌学
生物化学
有机化学
作者
Huan Liu,Weibin Zhang,Weili Wang,Guifang Han,Jingde Zhang,Shiwei Zhang,Jianchuan Wang,Yong Du
出处
期刊:Small
[Wiley]
日期:2023-09-03
卷期号:19 (52)
被引量:5
标识
DOI:10.1002/smll.202304264
摘要
Abstract Transition metal oxides, highly motivated anodes for lithium‐ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon‐coated nanosized Fe 3 O 4 /Cr 2 O 3 heterostructure with multiple interfaces is synthesized by a facile sol–gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li + migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe 3 O 4 , Cr 2 O 3 , and carbon layers establish multiple interface structures and built‐in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi‐interface heterostructure, as a lithium‐ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g −1 for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium‐ion adsorption kinetics. This multi‐interface heterostructure strategy offers a pathway for the development of advanced alkali metal‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI