亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Topic Modeling Approach to Discover the Global and Local Subjects in Membrane Distillation Separation Process

膜蒸馏 工艺工程 计算机科学 正渗透 反渗透 工程类 海水淡化 环境科学 人工智能 化学 生物化学
作者
Ersin Aytaç,M. Khayet
出处
期刊:Separations [MDPI AG]
卷期号:10 (9): 482-482
标识
DOI:10.3390/separations10090482
摘要

Membrane distillation (MD) is proposed as an environmentally friendly technology of emerging interest able to aid in the resolution of the worldwide water issue and brine processing by producing distilled water and treating high-saline solutions up to their saturation with a view toward reaching zero liquid discharge (ZLD) at relatively low temperature requirements and a low operating hydrostatic pressure. Topic modeling (TM), which is a Machine Learning (ML) method combined with Natural Language Processing (NLP), is a customizable approach that is ideal for researching massive datasets with unknown themes. In this study, we used BERTopic, a new cutting-edge Python library for topic modeling, to explore the global and local themes in the MD separation literature. By using the BERTopic model, the words describing the collected dataset were detected together with over- and underexplored research topics to guide MD researchers in planning their future works. The results indicated that two global themes are widely discussed and are relevant to MD scientists abroad. In brief, these topics are permeate flux, heat-energy recovery, surface modification, and polyvinylidene fluoride hydrophobic membranes. BERTopic discovered 62 local concepts. The most researched local topics were solar applications, membrane scaling, and electrospun membranes, while the least investigated were boron removal, dairy effluent applications, and nickel wastewater treatment. In addition, the topics were illustrated in a 2D plane to better understand the obtained results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱桃猴子应助Nan采纳,获得10
12秒前
22秒前
33秒前
科目三应助无语的棉花糖采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
一勺四季完成签到 ,获得积分10
1分钟前
科研通AI2S应助Destiny采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
慕青应助龙卷风吹啊吹采纳,获得10
2分钟前
2分钟前
pp‘s完成签到 ,获得积分10
2分钟前
大学生完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
严冰蝶完成签到 ,获得积分10
4分钟前
梅杰发布了新的文献求助10
4分钟前
Who发布了新的文献求助10
4分钟前
梅杰完成签到,获得积分10
4分钟前
yihuifa完成签到 ,获得积分10
4分钟前
4分钟前
田様应助Who采纳,获得10
4分钟前
4分钟前
4分钟前
洛洛大方应助漱泉枕石采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
洛洛大方应助茜茜采纳,获得10
5分钟前
5分钟前
倾卿如玉完成签到 ,获得积分10
5分钟前
cc发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307359
求助须知:如何正确求助?哪些是违规求助? 2941020
关于积分的说明 8500151
捐赠科研通 2615407
什么是DOI,文献DOI怎么找? 1428834
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410