EARL: An Elliptical Distribution Aided Adaptive Rotation Label Assignment for Oriented Object Detection in Remote Sensing Images

计算机科学 加权 探测器 采样(信号处理) 样品(材料) 旋转(数学) 自适应采样 特征(语言学) 人工智能 比例(比率) 计算机视觉 编码(集合论) 目标检测 过程(计算) 模式识别(心理学) 滤波器(信号处理) 数学 统计 物理 电信 语言学 哲学 集合(抽象数据类型) 量子力学 声学 蒙特卡罗方法 热力学 程序设计语言 操作系统
作者
Jian Guan,Mingjie Xie,Youtian Lin,Guangjun He,Pengming Feng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:9
标识
DOI:10.1109/tgrs.2023.3311416
摘要

Label assignment is a crucial process in object detection, which significantly influences the detection performance by determining positive or negative samples during training process. However, existing label assignment strategies barely consider the characteristics of targets in remote sensing images (RSIs) thoroughly, e.g., large variations in scales and aspect ratios, leading to insufficient and imbalanced sampling and introducing more low-quality samples, thereby limiting detection performance. To solve the above problems, an Elliptical Distribution aided Adaptive Rotation Label Assignment (EARL) is proposed to select high-quality positive samples adaptively in anchor-free detectors. Specifically, an adaptive scale sampling (ADS) strategy is presented to select samples adaptively among multi-level feature maps according to the scales of targets, which achieves sufficient sampling with more balanced scale-level sample distribution. In addition, a dynamic elliptical distribution aided sampling (DED) strategy is proposed to make the sample distribution more flexible to fit the shapes and orientations of targets, and filter out low-quality samples. Furthermore, a spatial distance weighting (SDW) module is introduced to integrate the adaptive distance weighting into loss function, which makes the detector more focused on the high-quality samples. Extensive experiments on several popular datasets demonstrate the effectiveness and superiority of our proposed EARL, where without bells and whistles, it can be easily applied to different detectors and achieve state-of-the-art performance. The source code will be available at: https://github.com/Justlovesmile/EARL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的发箍完成签到 ,获得积分10
1秒前
忧虑的向日葵完成签到,获得积分10
1秒前
iNk应助husker采纳,获得10
1秒前
Jiang完成签到,获得积分10
1秒前
田鑫智发布了新的文献求助10
2秒前
2秒前
2秒前
llynvxia完成签到,获得积分10
2秒前
2秒前
无花果应助yao采纳,获得10
3秒前
Emma施施完成签到,获得积分10
3秒前
ZHY发布了新的文献求助10
3秒前
小刺猬完成签到,获得积分10
3秒前
易哒哒发布了新的文献求助10
4秒前
sean完成签到,获得积分10
5秒前
5秒前
CH完成签到,获得积分10
5秒前
5秒前
江湖夜雨发布了新的文献求助10
5秒前
ww发布了新的文献求助20
5秒前
默默纲完成签到,获得积分10
5秒前
meiwei完成签到,获得积分10
6秒前
12345完成签到 ,获得积分10
9秒前
dddd发布了新的文献求助10
9秒前
Barid完成签到,获得积分10
9秒前
SYLH应助丰富的鞅采纳,获得20
10秒前
脑洞疼应助开心绫采纳,获得10
10秒前
zjrh完成签到,获得积分10
10秒前
Zoki完成签到,获得积分10
11秒前
11秒前
Orange应助飞云采纳,获得10
11秒前
coolkid应助研友_楼灵煌采纳,获得10
11秒前
12秒前
紧张的谷槐完成签到,获得积分10
12秒前
大气依萱完成签到 ,获得积分10
13秒前
15秒前
朱加凤完成签到,获得积分10
15秒前
zhichi9完成签到,获得积分10
15秒前
端庄的以寒完成签到,获得积分10
15秒前
脑洞疼应助臭屁大王采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514