计算机科学
加权
探测器
采样(信号处理)
样品(材料)
旋转(数学)
自适应采样
特征(语言学)
人工智能
比例(比率)
计算机视觉
编码(集合论)
目标检测
过程(计算)
模式识别(心理学)
滤波器(信号处理)
数学
统计
物理
电信
语言学
哲学
集合(抽象数据类型)
量子力学
声学
蒙特卡罗方法
热力学
程序设计语言
操作系统
作者
Jian Guan,Mingjie Xie,Youtian Lin,Guangjun He,Pengming Feng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-15
被引量:7
标识
DOI:10.1109/tgrs.2023.3311416
摘要
Label assignment is a crucial process in object detection, which significantly influences the detection performance by determining positive or negative samples during training process. However, existing label assignment strategies barely consider the characteristics of targets in remote sensing images (RSIs) thoroughly, e.g., large variations in scales and aspect ratios, leading to insufficient and imbalanced sampling and introducing more low-quality samples, thereby limiting detection performance. To solve the above problems, an Elliptical Distribution aided Adaptive Rotation Label Assignment (EARL) is proposed to select high-quality positive samples adaptively in anchor-free detectors. Specifically, an adaptive scale sampling (ADS) strategy is presented to select samples adaptively among multi-level feature maps according to the scales of targets, which achieves sufficient sampling with more balanced scale-level sample distribution. In addition, a dynamic elliptical distribution aided sampling (DED) strategy is proposed to make the sample distribution more flexible to fit the shapes and orientations of targets, and filter out low-quality samples. Furthermore, a spatial distance weighting (SDW) module is introduced to integrate the adaptive distance weighting into loss function, which makes the detector more focused on the high-quality samples. Extensive experiments on several popular datasets demonstrate the effectiveness and superiority of our proposed EARL, where without bells and whistles, it can be easily applied to different detectors and achieve state-of-the-art performance. The source code will be available at: https://github.com/Justlovesmile/EARL.
科研通智能强力驱动
Strongly Powered by AbleSci AI