电催化剂
材料科学
纳米片
可逆氢电极
电化学
化学工程
兴奋剂
电解质
电极
法拉第效率
无机化学
纳米技术
化学
工作电极
光电子学
物理化学
工程类
作者
Rohini Subhash Kanase,Getasew Mulualem Zewdie,Maheswari Arunachalam,Jyoti Badiger,Suzan Abdelfattah Sayed,Kwang–Soon Ahn,Jun‐Seok Ha,Uk Sim,Hyeyoung Shin,Soon Hyung Kang
标识
DOI:10.1016/j.jechem.2023.09.007
摘要
The discovery of efficient, selective, and stable electrocatalysts can be a key point to produce the large-scale chemical fuels via electrochemical CO2 reduction (ECR). In this study, an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes, and the effect of nitrogen (N) doping on the ECR activity of ZnO electrocatalysts was investigated. Initially, a ZnO nanosheet was prepared via the hydrothermal method, and nitridation was performed at different times to control the N-doping content. With an increase in the N-doping content, the morphological properties of the nanosheet changed significantly, namely, the 2D nanosheets transformed into the irregularly shaped nanoparticles. Furthermore, the ECR performance of ZnO electrocatalysts with different N-doping content was assessed in 1.0 M KHCO3 electrolyte using a gas-diffusion electrode-based ECR cell. While the ECR activity increased after a small amount of N doping, it decreased for higher N doping content. Among them, the N:ZnO-1h electrocatalysts showed the best CO selectivity, with a faradaic efficiency (FECO) of 92.7% at −0.73 V vs. reversible hydrogen electrode (RHE), which was greater than that of an undoped ZnO electrocatalyst (FECO of 63.4% at −0.78 VRHE). Also, the N:ZnO-1h electrocatalyst exhibited outstanding durability for 16 h, with a partial current density of −92.1 mA cm−2. This improvement of N:ZnO-1h electrocatalyst can be explained by the theoretical DFT study, demonstrating that this improvement of N:ZnO-1h electrocatalyst comes from the optimized active sites, (i) lowering the free energy barrier for the rate-determining step (RDS), (ii) the modification of electronic structure, and (iii) enhancing the electron transfer rate by N doping.
科研通智能强力驱动
Strongly Powered by AbleSci AI