亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wearable Smart Sensor System for Monitoring and Intelligent Prediction of Sodium Ions in Human Perspiration

出汗 可穿戴计算机 计算机科学 嵌入式系统 智能传感器 实时计算 人机交互 无线传感器网络 计算机网络 医学 精神科
作者
Wei Xu,Linze Hong,Jiufu Zheng,Minghan Li,Yunzhi Hua,Xiaojin Zhao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 8146-8155 被引量:2
标识
DOI:10.1109/jiot.2023.3317141
摘要

To date, many studies have been carried out for monitoring analytes in human perspiration with wearable sweat sensors, but few of them have done an in-depth investigation on the relationship between the acquired sensing data and human health status from a system scenario. In this article, we report a wearable smart sensor system (WS3), which can not only monitor the concentration of sodium ions in human perspiration but also predict the dehydration state of the human body. The proposed WS3 consists of an entire three-layer Internet of Things (IoT) structure. The perception layer includes a sweat sensor with a sensitivity of 60.3 ± 2 mV/decade, an analog front-end (AFE) with a signal amplification gain of 3, and a rechargeable 3.7-V Li-ion battery. The signal conditioning circuit can read the sodium ion concentration data obtained by the sweat sensor and wirelessly send it to the mobile phone APP in the application layer through Bluetooth. Besides, the mobile phone APP can exchange the data with the cloud server in the network layer through hypertext transfer protocol secure (HTTPS) requests, allowing the real-time post of concentration data and acquiring predicted dehydration states. Moreover, a lightweight deep-learning (DL) algorithm based on a Seq2Seq long short-term memory (LSTM) model with Luong attention is implemented in the cloud server, which achieves an overall accuracy of above 91% in the prediction of dehydration. The performance achieved by the WS3 combined with its high level of convenience and compactness makes it a promising wearable system for deployment in the IoT for daily human healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的之瑶完成签到,获得积分10
28秒前
28秒前
35秒前
49秒前
58秒前
Budada发布了新的文献求助30
1分钟前
璨澄完成签到 ,获得积分10
1分钟前
1分钟前
风中凡霜完成签到,获得积分10
1分钟前
风中凡霜发布了新的文献求助10
1分钟前
黑土完成签到 ,获得积分10
1分钟前
Budada完成签到,获得积分20
1分钟前
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
宽宽发布了新的文献求助10
2分钟前
博ge完成签到 ,获得积分10
2分钟前
宽宽完成签到,获得积分10
2分钟前
2分钟前
风中一叶完成签到 ,获得积分0
3分钟前
3分钟前
Yuan完成签到,获得积分10
4分钟前
早晚完成签到 ,获得积分10
4分钟前
111完成签到,获得积分10
4分钟前
violet发布了新的文献求助20
4分钟前
优秀的盼夏完成签到,获得积分10
5分钟前
111发布了新的文献求助10
7分钟前
Owen应助111采纳,获得10
7分钟前
7分钟前
zjh发布了新的文献求助10
7分钟前
锂氧完成签到 ,获得积分10
7分钟前
zjh完成签到,获得积分10
8分钟前
坚强的广山应助科研通管家采纳,获得200
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
9分钟前
111发布了新的文献求助10
9分钟前
Ava应助111采纳,获得10
9分钟前
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412566
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716865