Deep Learning Technique for Congenital Heart Disease Detection Using Stacking-Based CNN-LSTM Models From Fetal Echocardiogram: A Pilot Study

深度学习 人工智能 心脏病 医学 超声波 机器学习 计算机科学 心脏病学 放射科
作者
Tawsifur Rahman,Mahmoud Khatib A. A. Al-Ruweidi,Md. Shaheenur Islam Sumon,Reema Yousef Kamal,Muhammad E. H. Chowdhury,Hülya Yalçın
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 110375-110390 被引量:1
标识
DOI:10.1109/access.2023.3316719
摘要

Congenital heart defects (CHDs) are a leading cause of death in infants under 1 year of age.Prenatal intervention can reduce the risk of postnatal serious CHD patients, but current diagnosis is based on qualitative criteria, which can lead to variability in diagnosis between clinicians.Objectives: To detect morphological and temporal changes in cardiac ultrasound (US) videos of fetuses with hypoplastic left heart syndrome (HLHS) using deep learning models.A small cohort of 9 healthy and 13 HLHS patients were enrolled, and ultrasound videos at three gestational time points were collected.The videos were preprocessed and segmented to cardiac cycle videos, and five different deep learning CNN-LSTM models were trained (MobileNetv2, ResNet18, ResNet50, DenseNet121, and GoogleNet).The top-performing three models were used to develop a novel stacking CNN-LSTM model, which was trained using five-fold cross-validation to classify HLHS and healthy patients.The stacking CNN-LSTM model outperformed other pre-trained CNN-LSTM models with the accuracy, precision, sensitivity, F1 score, and specificity of 90.5%, 92.5%, 92.5%, 92.5%, and 85%, respectively for video-wise classification, and with the accuracy, precision, sensitivity, F1 score, and specificity of 90.5%, 92.5%, 92.5%, 92.5%, and 85%, respectively for subject-wise classification using ultrasound videos.This study demonstrates the potential of using deep learning models to classify CHD prenatal patients using ultrasound videos, which can aid in the objective assessment of the disease in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞星发布了新的文献求助10
刚刚
123完成签到,获得积分10
刚刚
所所应助地对地导弹采纳,获得10
1秒前
奋斗天德完成签到 ,获得积分10
3秒前
77完成签到,获得积分10
4秒前
9秒前
bean完成签到,获得积分10
9秒前
不辣的完成签到 ,获得积分10
9秒前
Jacky完成签到,获得积分10
10秒前
软绵绵完成签到,获得积分10
13秒前
Jacky发布了新的文献求助10
13秒前
15秒前
斯文败类应助雅玲采纳,获得10
15秒前
羊羊发布了新的文献求助10
16秒前
Grinde发布了新的文献求助10
19秒前
加薪奥利奥完成签到 ,获得积分10
22秒前
慕青应助Jacky采纳,获得10
22秒前
23秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得30
26秒前
26秒前
英姑应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
大个应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
www应助科研通管家采纳,获得10
26秒前
26秒前
我是老大应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
八九完成签到 ,获得积分10
27秒前
枯荷完成签到,获得积分0
28秒前
徒玦完成签到 ,获得积分10
29秒前
温暖秋蝶发布了新的文献求助10
29秒前
33秒前
林小美完成签到,获得积分10
35秒前
深情安青应助大方听云采纳,获得30
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239694
求助须知:如何正确求助?哪些是违规求助? 2884943
关于积分的说明 8235991
捐赠科研通 2553120
什么是DOI,文献DOI怎么找? 1381389
科研通“疑难数据库(出版商)”最低求助积分说明 649228
邀请新用户注册赠送积分活动 624914