上睑下垂
自噬
PI3K/AKT/mTOR通路
程序性细胞死亡
细胞生物学
RPTOR公司
生物
细胞凋亡
信号转导
生物化学
作者
Ran Guo,Guoyu Zhao,Guangxu Bai,Jeremy J.W. Chen,Wen Han,Na Cui,Hao Wang
标识
DOI:10.1016/j.intimp.2023.110964
摘要
A reduction in the number of CD4+ T cells is a central part of the immunosuppression phase of sepsis and leads to impaired immune defense ability and increased mortality. Pyroptosis, a newly discovered programmed cell death, was confirmed to be an important mechanism of lymphocytopenia in a lot of human diseases and is under the regulation of autophagy. The mammalian target of rapamycin (mTOR) pathway is closely related to CD4+ T-cell survival. Whether the mTOR pathway influences CD4+ T cell pyroptosis by regulating autophagy remains unknown. In this study, a septic mouse model was developed using cecal ligation and puncture (CLP) to explore the degree of pyroptosis and autophagy of CD4+ T cells. T-cell-specific mTOR/TSC1-knockout mice were used to investigate the role of mTOR pathway in the regulation of CD4+ T cell pyroptosis. Bafilomycin, a specific autophagy inhibitor, was used to verify the regulatory effect of autophagy on pyroptosis in septic mice. We observed aggravated pyroptosis in CD4+ T cells in CLP mice accompanied by impaired autophagy activity and an overactivated mTOR signaling pathway. Depletion of mTOR relieved autophagy deficiency and reduced the proportion of pyroptotic CD4+ T cells. In T-cell-specific mTOR-knockout mice treated with bafilomycin, the protective effect of mTOR depletion vanished. This indicated that autophagy negatively regulates CD4+ T cell pyroptosis, which is under the control of the mTOR pathway. Taken together, our findings emphasize the importance of pyroptosis in sepsis-induced lymphopenia and reveal the regulatory effects of the mTOR pathway and the role of autophagy in this regulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI