Global and local neural cognitive modeling for student performance prediction

计算机科学 认知 追踪 相似性(几何) 人工智能 认知模型 任务(项目管理) 机器学习 心理学 操作系统 图像(数学) 经济 神经科学 管理
作者
Yu Ru Su,Shuanghong Shen,Linbo Zhu,Le Wu,Zhenya Huang,Zeyu Cheng,Qi Liu,Shijin Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121637-121637
标识
DOI:10.1016/j.eswa.2023.121637
摘要

Student performance prediction is a critical task in supporting decision-making for Intelligent Tutoring Systems (ITS). Correct predictions of student performance are prerequisites for ITS to supply intelligent services and optimize learning efficiency, e.g., recommending the most appropriate learning resources for each student. Existing methods mainly include cognitive diagnosis and knowledge tracing, both of which focus on students' cognitive modeling based on their interactions on a sequence of items and give predictions by assessing if their cognitive states can meet the item requirements. Specifically, cognitive diagnosis only considers students' global static cognitive states, while knowledge tracing focuses on students' local dynamics. However, both global and local features are critical for predicting student performance. Therefore, in this paper, we propose a novel Global and Local Neural Cognitive (GLNC) model to capture both global and local features in student-item interactions for more accurate predictions. Specifically, we first learn students' global cognitive level according to all student-item interactions. Then, we propose a self-attentive encoder based on the scaled dot-product attention mechanism to extract the local cognitive dynamics and the dependencies between students' recent interactions. Finally, to obtain better predictions, we design a fused gate based on the similarity between students' recently responded items and the item to be predicted to adaptively combine the global and local features. To evaluate the effectiveness of GLNC, we compare it with both cognitive diagnosis and knowledge tracing methods. All experiments are conducted on three public datasets that contain real student-item interactions on mathematics or language courses from various ITS. The experimental results demonstrate that GLNC achieves an average score of 0.7810 on the AUC metric, 0.7627 on the ACC metric, 0.3987 on the RMSE metric, 0.2023 on the r2 metric, respectively achieving an average improvement of 1.84%, 1.07%, 1.87%, and 11.38% in contrast to existing state-of-the-art methods (i.e., NCD and LPKT). Moreover, we further analyze the performance of GLNC under different probabilities of guessing and slipping, the results indicate that GLNC is more robust against the influence of noisy data while considering both global and local features. Benefiting from the superior accuracy and stability, our proposed GLNC has a wide range of potential implications for ITS, which can be easily applied to improve students' learning efficiency and experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活爹发布了新的文献求助10
2秒前
2秒前
脑洞疼应助谨慎冰海采纳,获得10
3秒前
哈ha发布了新的文献求助10
4秒前
拾荒完成签到,获得积分10
5秒前
酷波er应助专注灵凡采纳,获得10
5秒前
5秒前
小马甲应助科研小白采纳,获得10
6秒前
7秒前
加菲丰丰应助橙子采纳,获得20
7秒前
天选之子发布了新的文献求助10
9秒前
9秒前
superluckc发布了新的文献求助10
9秒前
……发布了新的文献求助10
10秒前
田様应助哈ha采纳,获得10
11秒前
小蘑菇应助勤恳的小霸王采纳,获得30
11秒前
落星完成签到,获得积分10
12秒前
Jahn完成签到,获得积分10
12秒前
田超完成签到,获得积分10
12秒前
烟花应助暴躁的雨梅采纳,获得10
15秒前
18秒前
温玉完成签到 ,获得积分10
18秒前
19秒前
19秒前
在水一方应助封尘逸动采纳,获得10
20秒前
gao高发布了新的文献求助10
22秒前
22秒前
叮当应助狂野的手链采纳,获得20
23秒前
默默的巧荷完成签到,获得积分10
23秒前
贰鸟应助嘘唏采纳,获得20
24秒前
朴素勒完成签到,获得积分10
24秒前
NexusExplorer应助MUAL采纳,获得10
24秒前
充电宝应助细心的语蓉采纳,获得10
25秒前
二二发布了新的文献求助10
26秒前
太阳完成签到,获得积分10
26秒前
赘婿应助superluckc采纳,获得10
28秒前
L-g-b完成签到 ,获得积分10
28秒前
29秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149493
求助须知:如何正确求助?哪些是违规求助? 2800565
关于积分的说明 7840531
捐赠科研通 2458065
什么是DOI,文献DOI怎么找? 1308242
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706