有限元法
刚度矩阵
非线性系统
投影(关系代数)
计算
要素(刑法)
计算机科学
多项式的
水准点(测量)
应用数学
算法
数学优化
数学
数学分析
结构工程
工程类
物理
大地测量学
量子力学
法学
政治学
地理
作者
Bing‐Bing Xu,Fan Peng,Peter Wriggers
标识
DOI:10.1016/j.cma.2023.116555
摘要
In this paper, a novel higher stabilization-free virtual element method is proposed for compressible hyper-elastic materials in 2D. Different from the most traditional virtual element formulation, the method does not need any stabilization. The main idea is to modify the virtual element space to allow the computation of a higher-order polynomial L2 projection of the gradient. Based on that the stiffness matrix can be obtained directly which greatly simplifies the analysis process, especially for nonlinear problems. Hyper-elastic materials are considered and some benchmark nonlinear problems are solved to verify the capability and accuracy of the stabilization-free virtual element method.
科研通智能强力驱动
Strongly Powered by AbleSci AI