Predictive Recruitment in Vehicular Crowdsensing Based on Spatial Sensing Strength Analysis Method

计算机科学 拥挤感测 保险丝(电气) 实时计算 信号强度 上传 数据挖掘 无线传感器网络 工程类 计算机网络 计算机安全 电气工程 操作系统
作者
Guanyu Yao,Jie Huo,Luhan Wang,Zhaoming Lu,Lu‐Ning Liu,Xiangming Wen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3159-3176
标识
DOI:10.1109/tvt.2023.3326686
摘要

Vehicular crowdsensing is an efficient method of data collection in cities, benefiting from the powerful moving and sensing capabilities of intelligent vehicles. Modeling sensing capacities of vehicles and analyzing sensing effect based on sensor setup schemes are crucial in vehicular crowdsensing system. If we can infer the sensing strength of vehicles towards surrounding spatial points in advance, it would facilitate the determination of which vehicles to recruit for uploading sensing data, thereby achieving uniform and wide sensing coverage. However, the sensing strength of vehicles is not considered in the current research due to the diversity of sensors deployed on vehicles and the complexity of spatial relationships among vehicles in actual traffic scenarios. Therefore, this paper proposes a predictive vehicle recruitment method based on spatial sensing strength analysis. First, a fine-grained method is proposed to analyze the sensing strength of vehicles with different sensor setup schemes at various points in space. We fuse the sensing results of multiple vehicles and design novel metrics to evaluate the overall sensing effect, which comprehensively consider sensing strength, uniformity, and coverage ratio. The proposed method innovatively combines the perceptual properties of actual sensors and the complex spatiotemporal relationships among vehicles. Then, to guarantee the timeliness of recruiting vehicles, we distinguish moving modes to predict vehicle movements and further obtain the spatial sensing strength of vehicles at a specific moment in the future. Furthermore, combined with the sensing and communicating capabilities of the roadside infrastructure, the vehicle recruitment problem is described as an optimization problem under multiple practical constraints. To address this problem, an online heuristic algorithm is proposed based on the predicted vehicles' sensing strength. Finally, we conduct extensive simulations based on a real dataset to visualize vehicle sensing effect and verify the superiority of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
123cxj完成签到,获得积分10
5秒前
CO2发布了新的文献求助10
5秒前
summer发布了新的文献求助10
5秒前
6秒前
Xx.发布了新的文献求助10
6秒前
大大关注了科研通微信公众号
6秒前
稚祎完成签到 ,获得积分10
6秒前
6秒前
CodeCraft应助东东采纳,获得10
7秒前
8秒前
叽里咕噜完成签到 ,获得积分10
9秒前
田様应助zccc采纳,获得10
10秒前
隐形的雁完成签到,获得积分10
10秒前
追寻的秋玲完成签到,获得积分10
11秒前
李繁蕊发布了新的文献求助10
11秒前
12秒前
舒心的紫雪完成签到 ,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
不上课不行完成签到,获得积分10
17秒前
再干一杯完成签到,获得积分10
17秒前
18秒前
汉堡包应助rudjs采纳,获得10
19秒前
19秒前
zsyzxb发布了新的文献求助10
20秒前
东东发布了新的文献求助10
20秒前
zena92发布了新的文献求助10
21秒前
锤子米完成签到,获得积分10
21秒前
21秒前
赤练仙子完成签到,获得积分10
23秒前
MnO2fff应助zsyzxb采纳,获得20
26秒前
kingwill应助zsyzxb采纳,获得20
26秒前
顺利鱼完成签到,获得积分10
27秒前
29秒前
30秒前
Xx.完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808