Predictive Recruitment in Vehicular Crowdsensing Based on Spatial Sensing Strength Analysis Method

计算机科学 拥挤感测 保险丝(电气) 实时计算 信号强度 上传 数据挖掘 无线传感器网络 工程类 计算机网络 计算机安全 电气工程 操作系统
作者
Guanyu Yao,Jie Huo,Luhan Wang,Zhaoming Lu,Lu‐Ning Liu,Xiangming Wen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3159-3176
标识
DOI:10.1109/tvt.2023.3326686
摘要

Vehicular crowdsensing is an efficient method of data collection in cities, benefiting from the powerful moving and sensing capabilities of intelligent vehicles. Modeling sensing capacities of vehicles and analyzing sensing effect based on sensor setup schemes are crucial in vehicular crowdsensing system. If we can infer the sensing strength of vehicles towards surrounding spatial points in advance, it would facilitate the determination of which vehicles to recruit for uploading sensing data, thereby achieving uniform and wide sensing coverage. However, the sensing strength of vehicles is not considered in the current research due to the diversity of sensors deployed on vehicles and the complexity of spatial relationships among vehicles in actual traffic scenarios. Therefore, this paper proposes a predictive vehicle recruitment method based on spatial sensing strength analysis. First, a fine-grained method is proposed to analyze the sensing strength of vehicles with different sensor setup schemes at various points in space. We fuse the sensing results of multiple vehicles and design novel metrics to evaluate the overall sensing effect, which comprehensively consider sensing strength, uniformity, and coverage ratio. The proposed method innovatively combines the perceptual properties of actual sensors and the complex spatiotemporal relationships among vehicles. Then, to guarantee the timeliness of recruiting vehicles, we distinguish moving modes to predict vehicle movements and further obtain the spatial sensing strength of vehicles at a specific moment in the future. Furthermore, combined with the sensing and communicating capabilities of the roadside infrastructure, the vehicle recruitment problem is described as an optimization problem under multiple practical constraints. To address this problem, an online heuristic algorithm is proposed based on the predicted vehicles' sensing strength. Finally, we conduct extensive simulations based on a real dataset to visualize vehicle sensing effect and verify the superiority of the proposed scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkl发布了新的文献求助10
刚刚
Lucas应助怕孤独的苑博采纳,获得10
刚刚
火柴天堂发布了新的文献求助10
1秒前
希望天下0贩的0应助li采纳,获得10
1秒前
cpulm完成签到,获得积分10
1秒前
大梦龟棠发布了新的文献求助10
1秒前
大模型应助开心的的发箍采纳,获得10
2秒前
脑洞疼应助ayayaya采纳,获得10
2秒前
透明木头完成签到,获得积分10
2秒前
科研通AI2S应助小慧儿采纳,获得10
3秒前
DTkunkun完成签到,获得积分10
4秒前
慧慧应助NNUsusan采纳,获得10
5秒前
6秒前
ymjssg应助飞云采纳,获得10
6秒前
6秒前
852应助犹豫晓啸采纳,获得10
6秒前
6秒前
6秒前
四毛完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
RR完成签到,获得积分20
8秒前
DTkunkun发布了新的文献求助30
8秒前
天天快乐应助大梦龟棠采纳,获得10
9秒前
9秒前
噜噜噜完成签到,获得积分10
9秒前
科研通AI6.1应助容蓉采纳,获得10
9秒前
打打应助火柴天堂采纳,获得10
9秒前
min完成签到,获得积分20
9秒前
发一篇sci完成签到 ,获得积分10
9秒前
星岛完成签到,获得积分10
10秒前
小瓶子完成签到,获得积分10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
尔珍发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965