Predictive Recruitment in Vehicular Crowdsensing Based on Spatial Sensing Strength Analysis Method

计算机科学 拥挤感测 保险丝(电气) 实时计算 信号强度 上传 数据挖掘 无线传感器网络 工程类 计算机网络 计算机安全 操作系统 电气工程
作者
Guanyu Yao,Jie Huo,Luhan Wang,Zhaoming Lu,Lu‐Ning Liu,Xiangming Wen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3159-3176
标识
DOI:10.1109/tvt.2023.3326686
摘要

Vehicular crowdsensing is an efficient method of data collection in cities, benefiting from the powerful moving and sensing capabilities of intelligent vehicles. Modeling sensing capacities of vehicles and analyzing sensing effect based on sensor setup schemes are crucial in vehicular crowdsensing system. If we can infer the sensing strength of vehicles towards surrounding spatial points in advance, it would facilitate the determination of which vehicles to recruit for uploading sensing data, thereby achieving uniform and wide sensing coverage. However, the sensing strength of vehicles is not considered in the current research due to the diversity of sensors deployed on vehicles and the complexity of spatial relationships among vehicles in actual traffic scenarios. Therefore, this paper proposes a predictive vehicle recruitment method based on spatial sensing strength analysis. First, a fine-grained method is proposed to analyze the sensing strength of vehicles with different sensor setup schemes at various points in space. We fuse the sensing results of multiple vehicles and design novel metrics to evaluate the overall sensing effect, which comprehensively consider sensing strength, uniformity, and coverage ratio. The proposed method innovatively combines the perceptual properties of actual sensors and the complex spatiotemporal relationships among vehicles. Then, to guarantee the timeliness of recruiting vehicles, we distinguish moving modes to predict vehicle movements and further obtain the spatial sensing strength of vehicles at a specific moment in the future. Furthermore, combined with the sensing and communicating capabilities of the roadside infrastructure, the vehicle recruitment problem is described as an optimization problem under multiple practical constraints. To address this problem, an online heuristic algorithm is proposed based on the predicted vehicles' sensing strength. Finally, we conduct extensive simulations based on a real dataset to visualize vehicle sensing effect and verify the superiority of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Prevergil完成签到,获得积分10
刚刚
不达鸟完成签到,获得积分10
1秒前
1秒前
2秒前
买桃子去发布了新的文献求助10
3秒前
稳重的烙发布了新的文献求助10
4秒前
Ava应助强仔采纳,获得10
5秒前
5秒前
6秒前
6秒前
8秒前
8秒前
FashionBoy应助单薄纸飞机采纳,获得10
10秒前
Evelyn发布了新的文献求助10
10秒前
Hello应助科研狗采纳,获得10
11秒前
小青发布了新的文献求助10
11秒前
买桃子去完成签到,获得积分10
12秒前
Amanda完成签到 ,获得积分20
12秒前
13秒前
14秒前
谦让紫发布了新的文献求助10
14秒前
nini发布了新的文献求助10
14秒前
17秒前
12345完成签到,获得积分10
17秒前
17秒前
科目三应助ZeSir采纳,获得10
17秒前
情怀应助wmmm采纳,获得10
18秒前
lhy完成签到,获得积分10
19秒前
胡楠完成签到,获得积分10
19秒前
强仔发布了新的文献求助10
19秒前
温暖宛筠完成签到,获得积分10
19秒前
青柠关注了科研通微信公众号
20秒前
勤劳滑板发布了新的文献求助10
20秒前
研友_VZG7GZ应助敏er采纳,获得10
21秒前
鲤鱼又菡发布了新的文献求助10
21秒前
22秒前
22秒前
huangsi发布了新的文献求助10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425