已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-learned constitutive relations for mechanoluminescent ZnS:Cu-PDMS composites

本构方程 材料科学 经验模型 弹性体 实验数据 智能材料 聚二甲基硅氧烷 机械工程 计算机科学 复合材料 数学 工程类 结构工程 有限元法 模拟 统计
作者
George Hoover,Andy Huang,Donghyeon Ryu
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:32 (10): 105025-105025 被引量:2
标识
DOI:10.1088/1361-665x/acf256
摘要

Abstract Materials with novel properties, such as emerging smart materials, offer a design challenge to researchers who want to make use of their unique behaviors. The complex nature of these material responses can be difficult to model from a physics-based understanding as a full description of the multi-physics, multi-scale, and non-linear phenomena requires expertise from various scientific disciplines. Some new smart materials, such as the mechanoluminescent (ML) copper-doped zinc sulfide (ZnS:Cu)-embedded in polydimethylsiloxane (PDMS) (ZnS:Cu–PDMS), lack a constitutive model or an agreement on the mechanisms of action behind the unique material properties. As constitutive equations are essential to engineer devices, with existing knowledge gap in underlying physics of smart materials, a viable approach is to use empirical data for deriving constitutive equations. However, it is challenging to derive constitutive equations on non-linear, multi-variate, and multi-physics relationship using conventional data processing approaches due to the size and complexity of the empirical data. In this work, a machine learning framework is proposed for ones to derive constitutive equations using empirical data for novel materials. The framework is validated by creating constitutive models for ZnS:Cu–PDMS elastomeric composites undergoing a variety of tensile load patterns. To avoid confinement of the models to the programming environment, in which they are developed, numerical fits of the machine-learned models are created as constitutive equations for the non-linear, multi-variate, and multi-physics ML properties. These models can be used when designing ML ZnS:Cu–PDMS to develop devices to harness the unique ML properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyfsci发布了新的文献求助10
1秒前
JJ完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Annieran发布了新的文献求助10
3秒前
YL发布了新的文献求助10
5秒前
香蕉觅云应助zwq采纳,获得10
6秒前
活力海云发布了新的文献求助10
6秒前
萌宠完成签到,获得积分10
8秒前
zhong关注了科研通微信公众号
9秒前
田様应助南小槿采纳,获得10
9秒前
从容的小霸王完成签到,获得积分20
10秒前
12秒前
Owen应助AAAA采纳,获得10
13秒前
热心的香水关注了科研通微信公众号
14秒前
15秒前
hotdx发布了新的文献求助10
16秒前
16秒前
华仔应助呆呆采纳,获得10
18秒前
18秒前
漂亮水绿发布了新的文献求助10
21秒前
郭柳含给郭柳含的求助进行了留言
22秒前
25秒前
25秒前
皮卡丘完成签到 ,获得积分0
25秒前
哈哈悦完成签到,获得积分10
26秒前
27秒前
27秒前
今天努力学习了吗完成签到,获得积分10
28秒前
28秒前
犹豫囧发布了新的文献求助30
28秒前
28秒前
28秒前
CodeCraft应助Youth采纳,获得10
30秒前
白糖发布了新的文献求助10
31秒前
zhong发布了新的文献求助10
31秒前
上官若男应助忧虑的代容采纳,获得10
32秒前
33秒前
lhs完成签到,获得积分20
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770