Machine-learned constitutive relations for mechanoluminescent ZnS:Cu-PDMS composites

本构方程 材料科学 经验模型 弹性体 实验数据 智能材料 聚二甲基硅氧烷 机械工程 计算机科学 复合材料 数学 工程类 结构工程 有限元法 模拟 统计
作者
George Hoover,Andy Huang,Donghyeon Ryu
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:32 (10): 105025-105025 被引量:2
标识
DOI:10.1088/1361-665x/acf256
摘要

Abstract Materials with novel properties, such as emerging smart materials, offer a design challenge to researchers who want to make use of their unique behaviors. The complex nature of these material responses can be difficult to model from a physics-based understanding as a full description of the multi-physics, multi-scale, and non-linear phenomena requires expertise from various scientific disciplines. Some new smart materials, such as the mechanoluminescent (ML) copper-doped zinc sulfide (ZnS:Cu)-embedded in polydimethylsiloxane (PDMS) (ZnS:Cu–PDMS), lack a constitutive model or an agreement on the mechanisms of action behind the unique material properties. As constitutive equations are essential to engineer devices, with existing knowledge gap in underlying physics of smart materials, a viable approach is to use empirical data for deriving constitutive equations. However, it is challenging to derive constitutive equations on non-linear, multi-variate, and multi-physics relationship using conventional data processing approaches due to the size and complexity of the empirical data. In this work, a machine learning framework is proposed for ones to derive constitutive equations using empirical data for novel materials. The framework is validated by creating constitutive models for ZnS:Cu–PDMS elastomeric composites undergoing a variety of tensile load patterns. To avoid confinement of the models to the programming environment, in which they are developed, numerical fits of the machine-learned models are created as constitutive equations for the non-linear, multi-variate, and multi-physics ML properties. These models can be used when designing ML ZnS:Cu–PDMS to develop devices to harness the unique ML properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李密完成签到 ,获得积分10
2秒前
白日做梦完成签到 ,获得积分10
2秒前
mm_zxh完成签到,获得积分10
2秒前
阿航完成签到,获得积分10
3秒前
小许发布了新的文献求助10
3秒前
一勺晚安z发布了新的文献求助10
4秒前
oxygen253完成签到,获得积分10
6秒前
8秒前
橙子爱吃火龙果完成签到 ,获得积分10
8秒前
西西完成签到 ,获得积分10
11秒前
mz11完成签到,获得积分10
11秒前
12秒前
12秒前
Tycoon发布了新的文献求助10
14秒前
李天王完成签到,获得积分10
14秒前
tanrui发布了新的文献求助10
15秒前
15秒前
大西瓜发布了新的文献求助10
16秒前
领导范儿应助现代雪柳采纳,获得10
18秒前
Akim应助Tycoon采纳,获得10
20秒前
Iceshadows发布了新的文献求助10
20秒前
sci大佬完成签到,获得积分10
21秒前
22秒前
闲鱼电脑完成签到,获得积分10
24秒前
24秒前
26秒前
26秒前
30秒前
osteoclast发布了新的文献求助10
31秒前
现代雪柳发布了新的文献求助10
31秒前
纾缓完成签到 ,获得积分10
32秒前
彭于晏应助Eaven采纳,获得10
32秒前
binz完成签到,获得积分10
33秒前
正常发布了新的文献求助10
33秒前
Miranda发布了新的文献求助10
33秒前
陈彦早发布了新的文献求助10
33秒前
34秒前
mz11关注了科研通微信公众号
37秒前
大西瓜完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160