Machine-learned constitutive relations for mechanoluminescent ZnS:Cu-PDMS composites

本构方程 材料科学 经验模型 弹性体 实验数据 智能材料 聚二甲基硅氧烷 机械工程 计算机科学 复合材料 数学 工程类 结构工程 有限元法 模拟 统计
作者
George Hoover,Andy Huang,Donghyeon Ryu
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:32 (10): 105025-105025 被引量:2
标识
DOI:10.1088/1361-665x/acf256
摘要

Abstract Materials with novel properties, such as emerging smart materials, offer a design challenge to researchers who want to make use of their unique behaviors. The complex nature of these material responses can be difficult to model from a physics-based understanding as a full description of the multi-physics, multi-scale, and non-linear phenomena requires expertise from various scientific disciplines. Some new smart materials, such as the mechanoluminescent (ML) copper-doped zinc sulfide (ZnS:Cu)-embedded in polydimethylsiloxane (PDMS) (ZnS:Cu–PDMS), lack a constitutive model or an agreement on the mechanisms of action behind the unique material properties. As constitutive equations are essential to engineer devices, with existing knowledge gap in underlying physics of smart materials, a viable approach is to use empirical data for deriving constitutive equations. However, it is challenging to derive constitutive equations on non-linear, multi-variate, and multi-physics relationship using conventional data processing approaches due to the size and complexity of the empirical data. In this work, a machine learning framework is proposed for ones to derive constitutive equations using empirical data for novel materials. The framework is validated by creating constitutive models for ZnS:Cu–PDMS elastomeric composites undergoing a variety of tensile load patterns. To avoid confinement of the models to the programming environment, in which they are developed, numerical fits of the machine-learned models are created as constitutive equations for the non-linear, multi-variate, and multi-physics ML properties. These models can be used when designing ML ZnS:Cu–PDMS to develop devices to harness the unique ML properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭永橙完成签到,获得积分20
1秒前
CodeCraft应助啊啊啊橙子采纳,获得10
1秒前
1秒前
忆寒完成签到,获得积分10
1秒前
2秒前
聪慧的饼干完成签到,获得积分10
2秒前
徐5V完成签到,获得积分10
2秒前
3秒前
moyuqilin完成签到,获得积分20
3秒前
彩虹捕手发布了新的文献求助10
3秒前
LLL发布了新的文献求助10
3秒前
3秒前
lili发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
wsx完成签到,获得积分10
5秒前
5秒前
动听的雪卉完成签到,获得积分10
5秒前
Rose发布了新的文献求助10
5秒前
赘婿应助炙热猎豹采纳,获得10
6秒前
周志友完成签到,获得积分10
6秒前
Duuuu发布了新的文献求助10
6秒前
7秒前
羊yang发布了新的文献求助10
7秒前
嫁接诺贝尔应助lili采纳,获得10
7秒前
汉堡包应助lili采纳,获得10
7秒前
酷波er应助lili采纳,获得10
7秒前
此晴可待发布了新的文献求助10
8秒前
8秒前
orixero应助小美采纳,获得10
8秒前
科研通AI6应助zyw采纳,获得10
8秒前
9秒前
殷勤的天亦完成签到,获得积分20
9秒前
澄桦完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721