Machine-learned constitutive relations for mechanoluminescent ZnS:Cu-PDMS composites

本构方程 材料科学 经验模型 弹性体 实验数据 智能材料 聚二甲基硅氧烷 机械工程 计算机科学 复合材料 数学 工程类 结构工程 有限元法 模拟 统计
作者
George Hoover,Andy Huang,Donghyeon Ryu
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:32 (10): 105025-105025 被引量:2
标识
DOI:10.1088/1361-665x/acf256
摘要

Abstract Materials with novel properties, such as emerging smart materials, offer a design challenge to researchers who want to make use of their unique behaviors. The complex nature of these material responses can be difficult to model from a physics-based understanding as a full description of the multi-physics, multi-scale, and non-linear phenomena requires expertise from various scientific disciplines. Some new smart materials, such as the mechanoluminescent (ML) copper-doped zinc sulfide (ZnS:Cu)-embedded in polydimethylsiloxane (PDMS) (ZnS:Cu–PDMS), lack a constitutive model or an agreement on the mechanisms of action behind the unique material properties. As constitutive equations are essential to engineer devices, with existing knowledge gap in underlying physics of smart materials, a viable approach is to use empirical data for deriving constitutive equations. However, it is challenging to derive constitutive equations on non-linear, multi-variate, and multi-physics relationship using conventional data processing approaches due to the size and complexity of the empirical data. In this work, a machine learning framework is proposed for ones to derive constitutive equations using empirical data for novel materials. The framework is validated by creating constitutive models for ZnS:Cu–PDMS elastomeric composites undergoing a variety of tensile load patterns. To avoid confinement of the models to the programming environment, in which they are developed, numerical fits of the machine-learned models are created as constitutive equations for the non-linear, multi-variate, and multi-physics ML properties. These models can be used when designing ML ZnS:Cu–PDMS to develop devices to harness the unique ML properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪元彤完成签到,获得积分10
2秒前
张志恒发布了新的文献求助10
2秒前
简历发布了新的文献求助10
4秒前
可爱的函函应助shinn采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
ding应助张志恒采纳,获得10
8秒前
上官若男应助huihui2121采纳,获得10
9秒前
10秒前
11秒前
12秒前
小蘑菇应助沙滩的收印采纳,获得10
12秒前
打打应助小米采纳,获得10
13秒前
14秒前
14秒前
彭于晏应助喵喵苗采纳,获得10
14秒前
darling发布了新的文献求助10
14秒前
谦让的牛排完成签到 ,获得积分10
16秒前
深情安青应助ZZZ采纳,获得10
16秒前
heguangjie发布了新的文献求助10
17秒前
shinn发布了新的文献求助10
17秒前
英姑应助学习采纳,获得10
18秒前
pear发布了新的文献求助10
19秒前
19秒前
xu1227发布了新的文献求助10
20秒前
Orange应助唠叨的以柳采纳,获得10
20秒前
samchen完成签到,获得积分10
21秒前
领导范儿应助迟迟采纳,获得10
21秒前
123456完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助30
22秒前
苗条的嘉熙完成签到,获得积分10
22秒前
科研通AI2S应助坦率铅笔采纳,获得10
23秒前
lzn完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助20
24秒前
ahaha发布了新的文献求助10
24秒前
25秒前
1111发布了新的文献求助10
25秒前
清风荷影完成签到 ,获得积分10
28秒前
28秒前
丘比特应助zxh采纳,获得10
29秒前
xiaoma完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761193
求助须知:如何正确求助?哪些是违规求助? 5528487
关于积分的说明 15399103
捐赠科研通 4897757
什么是DOI,文献DOI怎么找? 2634428
邀请新用户注册赠送积分活动 1582520
关于科研通互助平台的介绍 1537821