Engineering Colloidal Perovskite Nanocrystals and Devices for Efficient and Large-Area Light-Emitting Diodes

发光二极管 材料科学 光致发光 量子效率 光电子学 电致发光 纳米晶 钙钛矿(结构) 二极管 纳米技术 化学工程 图层(电子) 工程类
作者
Young-Hoon Kim,Tae‐Woo Lee
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (8): 655-667 被引量:3
标识
DOI:10.1021/accountsmr.3c00039
摘要

ConspectusColloidal metal halide perovskite nanocrystals (PNCs) have high color purity, solution processability, high luminescence efficiency, and facile color tunability in visible wavelengths and therefore show promise as light emitters in next-generation displays. The external quantum efficiency (EQE) of PNC light-emitting diodes (LEDs) has been rapidly increased to reach 24.96% by using colloidal PNCs and 28.9% using on-substrate in situ synthesized PNCs. However, high operating stability and a further increase of EQE in PNC-LEDs have been impeded for three reasons: (1) Colloidal PNCs consist of ionic crystal structures in which ligands bind dynamically and therefore easily agglomerate in colloidal solution and films; (2) Long-alkyl-chain organic ligands that adhere to the PNC surface improve the photoluminescence quantum efficiency and colloidal stability of PNCs in solution but impede charge transport in PNC films and limit their electroluminescence efficiency in LEDs; (3) Unoptimized device structure and nonuniform PNC films limit the charge balance and reduce the device efficiency in PNC-LEDs.In this Account, we summarize strategies to solve the limitations in PNCs and PNC-LEDs as consequences of photoluminescence quantum efficiency in PNCs and the charge-balance factor and out-coupling factor in LEDs, which together determine the EQE of PNC-LEDs. We introduce the fundamental photophysical properties of colloidal PNCs related to effective mass of charge carriers and surface stoichiometry, requirements for PNC surface stabilization, and subsequent research strategies to demonstrate highly efficient colloidal PNCs and PNC-LEDs with high operating stability.First, we present various ligand-engineering strategies that have been used to achieve both efficient carrier injection and radiative recombination in PNC films. In situ ligand engineering reduces ligand length and concentration during synthesis of colloidal PNCs, and it can achieve size-independent high color purity and high luminescent efficiency in PNCs. Postsynthesis ligand engineering such as optimized purification, replacement of organic ligands with inorganic ligands or strongly bound ligands can increase charge transport and coupling between PNC dots in films. The luminescence efficiency of PNCs and PNC-LEDs can be further increased by various postsynthesis ligand-engineering methods or by sequential treatment with different ligands. Second, we present methods to modify the crystal structure in PNCs to have alloy- or core/shell-like structure. Such crystal engineering is performed by the correlation between entropy and enthalpy in PNCs and result in increased carrier confinement (increased radiative recombination) and reduced defects (decreased nonradiative recombination). Third, we present strategies to boost the charge-balance factor and out-coupling factor in PNC-LEDs such as modification of thickness of each layer and insertion of additional interlayers, and out-coupling hemispherical lens are discussed. Finally, we present the advantages, potential, and remaining challenges to be solved to enable use of colloidal PNCs in commercialized industrial displays and solid-state lighting. We hope this Account will help its readers to grasp the progresses and perspectives of colloidal PNCs and PNC-LEDs, and that our insights will guide future research to achieve efficient PNC-LEDs that have high stability and low toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自觉沛芹完成签到,获得积分10
刚刚
YukiXu完成签到 ,获得积分10
刚刚
刚刚
桐桐应助SXM采纳,获得10
1秒前
波特卡斯D艾斯完成签到 ,获得积分10
2秒前
852应助排骨炖豆角采纳,获得10
3秒前
3秒前
顾矜应助木子采纳,获得10
3秒前
feng发布了新的文献求助10
3秒前
成就的小熊猫完成签到,获得积分10
4秒前
4秒前
Morgenstern_ZH完成签到,获得积分10
5秒前
hua发布了新的文献求助10
5秒前
_Forelsket_完成签到,获得积分10
5秒前
5秒前
半颗橙子完成签到 ,获得积分10
7秒前
科研通AI5应助zmy采纳,获得10
7秒前
善学以致用应助enoot采纳,获得10
8秒前
JamesPei应助失眠的血茗采纳,获得10
8秒前
青山发布了新的文献求助10
8秒前
亻鱼发布了新的文献求助10
9秒前
脑洞疼应助成就的小熊猫采纳,获得10
9秒前
9秒前
waterclouds完成签到 ,获得积分10
9秒前
圆圈儿完成签到,获得积分10
9秒前
司空剑封完成签到,获得积分10
10秒前
10秒前
海棠yiyi完成签到,获得积分10
10秒前
10秒前
梁小鑫发布了新的文献求助10
10秒前
Jenny应助圈圈采纳,获得10
11秒前
内向青文完成签到,获得积分10
11秒前
lefora完成签到,获得积分10
11秒前
丰知然应助CO2采纳,获得10
12秒前
Zhihu完成签到,获得积分10
12秒前
feng完成签到,获得积分10
13秒前
13秒前
美丽稀完成签到,获得积分10
14秒前
PXY应助屁王采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740