Electronic and Geometric Effects Endow PtRh Jagged Nanowires with Superior Ethanol Oxidation Catalysis

纳米线 X射线光电子能谱 催化作用 化学 X射线吸收光谱法 动力学 吸收光谱法 密度泛函理论 化学工程 光谱学 衰减全反射 红外光谱学 纳米技术 材料科学 计算化学 有机化学 工程类 物理 量子力学
作者
Renqin Yu,Ruiwen Shao,Fanghua Ning,Yaodong Yu,Jing Zhang,Xian‐Yin Ma,Rongying Zhu,Menggang Li,Jianping Lai,Yufeng Zhao,Lingyou Zeng,Jiujun Zhang,Zhonghong Xia
出处
期刊:Small [Wiley]
卷期号:20 (7) 被引量:8
标识
DOI:10.1002/smll.202305817
摘要

Abstract Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet‐chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt −1 and specific activity of 4.07 mA cm −2 , 3.62‐fold and 4.28‐folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti‐CO poisoning capability. Combining X‐ray absorption spectroscopy, X‐ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh‐induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate‐determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO 2 relative to CH 3 COOH/CH 3 CHO in infrared reflection absorption spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大型海狮完成签到,获得积分10
刚刚
搜集达人应助科研菜鸟采纳,获得10
1秒前
雨天有伞完成签到,获得积分10
1秒前
蕾子发布了新的文献求助10
1秒前
1秒前
zhui发布了新的文献求助10
1秒前
wanci应助jxcandice采纳,获得10
1秒前
factor发布了新的文献求助10
1秒前
2秒前
泊声发布了新的文献求助20
2秒前
narthon完成签到 ,获得积分10
2秒前
梦幻完成签到,获得积分10
2秒前
1604531786完成签到,获得积分10
2秒前
研友_LMNjkn发布了新的文献求助10
3秒前
xiao发布了新的文献求助10
3秒前
ww发布了新的文献求助10
3秒前
4秒前
Olsters发布了新的文献求助10
4秒前
深情安青应助该睡觉啦采纳,获得10
4秒前
4秒前
SEV完成签到,获得积分20
4秒前
愉快迎荷完成签到,获得积分10
5秒前
矮小的聪展完成签到,获得积分10
6秒前
factor完成签到,获得积分10
6秒前
Hello应助李来仪采纳,获得10
7秒前
SEV发布了新的文献求助10
7秒前
7秒前
7秒前
坚强亦丝应助隐形机器猫采纳,获得10
8秒前
小马甲应助SCI采纳,获得10
9秒前
老疯智发布了新的文献求助10
9秒前
sweetbearm应助通~采纳,获得10
9秒前
神凰完成签到,获得积分10
9秒前
Z小姐发布了新的文献求助10
10秒前
NexusExplorer应助白泽采纳,获得10
10秒前
11秒前
11秒前
火星上妙梦完成签到 ,获得积分10
11秒前
赘婿应助mayungui采纳,获得10
11秒前
贾不可发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794