A survival prediction model based on PCA-HSIDA-LSSVM for patients with esophageal squamous cell carcinoma

主成分分析 食管鳞状细胞癌 支持向量机 计算机科学 人工智能 算法 医学 内科学
作者
Yanfeng Wang,Yuhang Xia,Dan Liu,Junwei Sun,Yan Wang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:237 (12): 1409-1426
标识
DOI:10.1177/09544119231205664
摘要

Esophageal squamous cell carcinoma (ESCC) is a type of cancer and has some of the highest rates of both incidence and mortality globally. Developing accurate models for survival prediction provides a basis clinical judgment and decision making, improving the survival status of ESCC patients. Although many predictive models have been developed, there is still lack of highly accurate survival prediction models for ESCC patients. This study proposes a novel survival prediction model for ESCC patients based on principal component analysis (PCA) and least-squares support vector machine (LSSVM) optimized by an improved dragonfly algorithm with hybrid strategy (HSIDA). The original 17 blood indicators are condensed into five new variables by PCA, reducing data dimensionality and redundancy. An improved dragonfly algorithm based on hybrid strategy is proposed, which addresses the limitations of dragonfly algorithm, such as slow convergence, low search accuracy and insufficient vitality of late search. The proposed HSIDA is used to optimize the regularization parameter and kernel parameter of LSSVM, improving the prediction accuracy of the model. The proposed model is validated on the dataset of 400 patients with ESCC in the clinical database of First Affiliated Hospital of Zhengzhou University and the State Key Laboratory of Esophageal Cancer Prevention and Control of Henan Province. The experiment results demonstrate that the proposed HSIDA-LSSVM has the best prediction performance than LSSVM, HSIDA-BP, IPSO-LSSVM, COA-LSSVM and IBA-LSSVM. The proposed model achieves the accuracy of 96.25%, sensitivity of 95.12%, specificity of 97.44%, precision of 97.50%, and F1 score of 96.30%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuansouxiu发布了新的文献求助10
刚刚
英俊的铭应助逍遥采纳,获得10
1秒前
适合初七关注了科研通微信公众号
3秒前
唠叨的源智完成签到 ,获得积分0
4秒前
张婷完成签到,获得积分10
6秒前
蓝天应助煮饭吃Zz采纳,获得10
6秒前
破天富贵玩命追我完成签到 ,获得积分10
6秒前
兮遥遥完成签到 ,获得积分10
7秒前
Owen应助dpp采纳,获得10
8秒前
怀民完成签到 ,获得积分10
8秒前
自觉的书蝶完成签到,获得积分10
8秒前
cc关闭了cc文献求助
9秒前
充电宝应助生动的安波采纳,获得10
11秒前
mayun95发布了新的文献求助10
12秒前
3123939715完成签到,获得积分10
12秒前
mzz驳回了luis应助
13秒前
14秒前
哭泣忆文完成签到,获得积分10
15秒前
Houtengyili完成签到,获得积分10
17秒前
青城山下小星瞳完成签到,获得积分10
18秒前
一一发布了新的文献求助10
19秒前
zele女士完成签到,获得积分10
19秒前
19秒前
Fanbio完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
田様应助su采纳,获得10
22秒前
xiaoru发布了新的文献求助10
23秒前
25秒前
wogua发布了新的文献求助10
25秒前
阳佟擎苍完成签到 ,获得积分10
26秒前
26秒前
28秒前
xiaoru完成签到,获得积分10
31秒前
jonghuang发布了新的文献求助10
32秒前
Skyrin完成签到,获得积分0
32秒前
晓晓发布了新的文献求助10
33秒前
张勇振完成签到,获得积分10
34秒前
Hello应助wangqing采纳,获得10
34秒前
35秒前
万能图书馆应助科研牛马采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600631
求助须知:如何正确求助?哪些是违规求助? 4686248
关于积分的说明 14842519
捐赠科研通 4677270
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471207