A survival prediction model based on PCA-HSIDA-LSSVM for patients with esophageal squamous cell carcinoma

主成分分析 食管鳞状细胞癌 支持向量机 计算机科学 人工智能 算法 医学 内科学
作者
Yanfeng Wang,Yuhang Xia,Dan Liu,Junwei Sun,Yan Wang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE Publishing]
卷期号:237 (12): 1409-1426
标识
DOI:10.1177/09544119231205664
摘要

Esophageal squamous cell carcinoma (ESCC) is a type of cancer and has some of the highest rates of both incidence and mortality globally. Developing accurate models for survival prediction provides a basis clinical judgment and decision making, improving the survival status of ESCC patients. Although many predictive models have been developed, there is still lack of highly accurate survival prediction models for ESCC patients. This study proposes a novel survival prediction model for ESCC patients based on principal component analysis (PCA) and least-squares support vector machine (LSSVM) optimized by an improved dragonfly algorithm with hybrid strategy (HSIDA). The original 17 blood indicators are condensed into five new variables by PCA, reducing data dimensionality and redundancy. An improved dragonfly algorithm based on hybrid strategy is proposed, which addresses the limitations of dragonfly algorithm, such as slow convergence, low search accuracy and insufficient vitality of late search. The proposed HSIDA is used to optimize the regularization parameter and kernel parameter of LSSVM, improving the prediction accuracy of the model. The proposed model is validated on the dataset of 400 patients with ESCC in the clinical database of First Affiliated Hospital of Zhengzhou University and the State Key Laboratory of Esophageal Cancer Prevention and Control of Henan Province. The experiment results demonstrate that the proposed HSIDA-LSSVM has the best prediction performance than LSSVM, HSIDA-BP, IPSO-LSSVM, COA-LSSVM and IBA-LSSVM. The proposed model achieves the accuracy of 96.25%, sensitivity of 95.12%, specificity of 97.44%, precision of 97.50%, and F1 score of 96.30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
chengli发布了新的文献求助10
1秒前
2秒前
市不辣发布了新的文献求助10
2秒前
3秒前
xin发布了新的文献求助10
3秒前
英姑应助咩咩兔采纳,获得10
3秒前
大个应助法芙娜采纳,获得10
3秒前
晓晓发布了新的文献求助10
5秒前
5秒前
Mydddg完成签到,获得积分10
6秒前
任全强发布了新的文献求助10
6秒前
摆烂研究牲完成签到,获得积分10
6秒前
7秒前
xiaoshuai发布了新的文献求助10
10秒前
充电宝应助Jane采纳,获得10
10秒前
10秒前
852应助任全强采纳,获得10
12秒前
Tingting发布了新的文献求助10
13秒前
15秒前
15秒前
完美世界应助123采纳,获得10
15秒前
爱笑以松完成签到,获得积分10
15秒前
orixero应助优雅狗采纳,获得10
16秒前
西瓜草莓火龙果完成签到,获得积分10
16秒前
17秒前
火翟丰丰山心完成签到,获得积分10
18秒前
Mike14完成签到,获得积分10
19秒前
19秒前
善良的沉鱼完成签到,获得积分10
19秒前
迷人的Jack发布了新的文献求助10
20秒前
20秒前
20秒前
千夜发布了新的文献求助10
20秒前
丘比特应助潘潘采纳,获得10
20秒前
自由大叔发布了新的文献求助10
21秒前
孙燕应助科研通管家采纳,获得10
21秒前
夏宇应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352