A survival prediction model based on PCA-HSIDA-LSSVM for patients with esophageal squamous cell carcinoma

主成分分析 食管鳞状细胞癌 支持向量机 计算机科学 人工智能 算法 医学 内科学
作者
Yanfeng Wang,Yuhang Xia,Dan Liu,Junwei Sun,Yan Wang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:237 (12): 1409-1426
标识
DOI:10.1177/09544119231205664
摘要

Esophageal squamous cell carcinoma (ESCC) is a type of cancer and has some of the highest rates of both incidence and mortality globally. Developing accurate models for survival prediction provides a basis clinical judgment and decision making, improving the survival status of ESCC patients. Although many predictive models have been developed, there is still lack of highly accurate survival prediction models for ESCC patients. This study proposes a novel survival prediction model for ESCC patients based on principal component analysis (PCA) and least-squares support vector machine (LSSVM) optimized by an improved dragonfly algorithm with hybrid strategy (HSIDA). The original 17 blood indicators are condensed into five new variables by PCA, reducing data dimensionality and redundancy. An improved dragonfly algorithm based on hybrid strategy is proposed, which addresses the limitations of dragonfly algorithm, such as slow convergence, low search accuracy and insufficient vitality of late search. The proposed HSIDA is used to optimize the regularization parameter and kernel parameter of LSSVM, improving the prediction accuracy of the model. The proposed model is validated on the dataset of 400 patients with ESCC in the clinical database of First Affiliated Hospital of Zhengzhou University and the State Key Laboratory of Esophageal Cancer Prevention and Control of Henan Province. The experiment results demonstrate that the proposed HSIDA-LSSVM has the best prediction performance than LSSVM, HSIDA-BP, IPSO-LSSVM, COA-LSSVM and IBA-LSSVM. The proposed model achieves the accuracy of 96.25%, sensitivity of 95.12%, specificity of 97.44%, precision of 97.50%, and F1 score of 96.30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昭昭完成签到,获得积分10
刚刚
SCI发布了新的文献求助10
刚刚
卓然完成签到,获得积分10
刚刚
李来仪发布了新的文献求助10
1秒前
2秒前
菲菲呀完成签到,获得积分10
2秒前
Rrr发布了新的文献求助10
2秒前
4秒前
陌路完成签到,获得积分10
4秒前
善学以致用应助leon采纳,获得30
4秒前
5秒前
斯文败类应助嘻嘻采纳,获得10
5秒前
科研通AI5应助小只bb采纳,获得30
5秒前
yyyy发布了新的文献求助10
5秒前
2023AKY完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
彭于晏应助惠惠采纳,获得10
8秒前
风魂剑主完成签到,获得积分10
9秒前
yryzst9899发布了新的文献求助10
9秒前
10秒前
飘逸小笼包完成签到,获得积分10
10秒前
科研小郑完成签到,获得积分10
10秒前
CipherSage应助熊boy采纳,获得10
10秒前
XXGG完成签到 ,获得积分10
11秒前
大个应助舒心赛凤采纳,获得10
11秒前
晨曦发布了新的文献求助10
12秒前
12秒前
ff0110完成签到,获得积分10
13秒前
星辰大海应助苹果萧采纳,获得10
13秒前
徐徐完成签到,获得积分10
13秒前
哈哈哈哈发布了新的文献求助10
14秒前
请叫我风吹麦浪应助yoon采纳,获得10
14秒前
认真的青柠完成签到,获得积分10
14秒前
bbanshan完成签到,获得积分10
14秒前
卫生纸发布了新的文献求助10
14秒前
14秒前
15秒前
奔奔完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794