A survival prediction model based on PCA-HSIDA-LSSVM for patients with esophageal squamous cell carcinoma

主成分分析 食管鳞状细胞癌 支持向量机 计算机科学 人工智能 算法 医学 内科学
作者
Yanfeng Wang,Yuhang Xia,Dan Liu,Junwei Sun,Yan Wang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:237 (12): 1409-1426
标识
DOI:10.1177/09544119231205664
摘要

Esophageal squamous cell carcinoma (ESCC) is a type of cancer and has some of the highest rates of both incidence and mortality globally. Developing accurate models for survival prediction provides a basis clinical judgment and decision making, improving the survival status of ESCC patients. Although many predictive models have been developed, there is still lack of highly accurate survival prediction models for ESCC patients. This study proposes a novel survival prediction model for ESCC patients based on principal component analysis (PCA) and least-squares support vector machine (LSSVM) optimized by an improved dragonfly algorithm with hybrid strategy (HSIDA). The original 17 blood indicators are condensed into five new variables by PCA, reducing data dimensionality and redundancy. An improved dragonfly algorithm based on hybrid strategy is proposed, which addresses the limitations of dragonfly algorithm, such as slow convergence, low search accuracy and insufficient vitality of late search. The proposed HSIDA is used to optimize the regularization parameter and kernel parameter of LSSVM, improving the prediction accuracy of the model. The proposed model is validated on the dataset of 400 patients with ESCC in the clinical database of First Affiliated Hospital of Zhengzhou University and the State Key Laboratory of Esophageal Cancer Prevention and Control of Henan Province. The experiment results demonstrate that the proposed HSIDA-LSSVM has the best prediction performance than LSSVM, HSIDA-BP, IPSO-LSSVM, COA-LSSVM and IBA-LSSVM. The proposed model achieves the accuracy of 96.25%, sensitivity of 95.12%, specificity of 97.44%, precision of 97.50%, and F1 score of 96.30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有机发布了新的文献求助10
刚刚
刚刚
lbm完成签到,获得积分10
1秒前
茕凡桃七完成签到,获得积分10
1秒前
chuxia发布了新的文献求助10
4秒前
安静幻枫应助有机采纳,获得20
5秒前
JSM完成签到,获得积分0
6秒前
共享精神应助王欣采纳,获得30
7秒前
gy79210发布了新的文献求助10
7秒前
7秒前
9秒前
温暖的涵易完成签到,获得积分10
9秒前
顾矜应助海燕采纳,获得10
10秒前
英俊的铭应助xkk13采纳,获得10
11秒前
灰灰完成签到,获得积分10
12秒前
科目三应助妮儿采纳,获得10
13秒前
13秒前
汤汤发布了新的文献求助10
13秒前
小小发布了新的文献求助10
13秒前
英俊的铭应助chuxia采纳,获得10
15秒前
17秒前
17秒前
小凡ai小占关注了科研通微信公众号
18秒前
浮三白完成签到,获得积分10
18秒前
18秒前
liaofan2021发布了新的文献求助10
19秒前
19秒前
xkk13完成签到,获得积分10
20秒前
20秒前
qi7发布了新的文献求助10
21秒前
21秒前
21秒前
xkk13发布了新的文献求助10
22秒前
wujiaoqian发布了新的文献求助10
24秒前
24秒前
asd发布了新的文献求助10
24秒前
25秒前
25秒前
发发扶发布了新的文献求助10
25秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352731
求助须知:如何正确求助?哪些是违规求助? 2977735
关于积分的说明 8681231
捐赠科研通 2658733
什么是DOI,文献DOI怎么找? 1455921
科研通“疑难数据库(出版商)”最低求助积分说明 674158
邀请新用户注册赠送积分活动 664801