亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survival prediction model based on PCA-HSIDA-LSSVM for patients with esophageal squamous cell carcinoma

主成分分析 食管鳞状细胞癌 支持向量机 计算机科学 人工智能 算法 医学 内科学
作者
Yanfeng Wang,Yuhang Xia,Dan Liu,Junwei Sun,Yan Wang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE Publishing]
卷期号:237 (12): 1409-1426
标识
DOI:10.1177/09544119231205664
摘要

Esophageal squamous cell carcinoma (ESCC) is a type of cancer and has some of the highest rates of both incidence and mortality globally. Developing accurate models for survival prediction provides a basis clinical judgment and decision making, improving the survival status of ESCC patients. Although many predictive models have been developed, there is still lack of highly accurate survival prediction models for ESCC patients. This study proposes a novel survival prediction model for ESCC patients based on principal component analysis (PCA) and least-squares support vector machine (LSSVM) optimized by an improved dragonfly algorithm with hybrid strategy (HSIDA). The original 17 blood indicators are condensed into five new variables by PCA, reducing data dimensionality and redundancy. An improved dragonfly algorithm based on hybrid strategy is proposed, which addresses the limitations of dragonfly algorithm, such as slow convergence, low search accuracy and insufficient vitality of late search. The proposed HSIDA is used to optimize the regularization parameter and kernel parameter of LSSVM, improving the prediction accuracy of the model. The proposed model is validated on the dataset of 400 patients with ESCC in the clinical database of First Affiliated Hospital of Zhengzhou University and the State Key Laboratory of Esophageal Cancer Prevention and Control of Henan Province. The experiment results demonstrate that the proposed HSIDA-LSSVM has the best prediction performance than LSSVM, HSIDA-BP, IPSO-LSSVM, COA-LSSVM and IBA-LSSVM. The proposed model achieves the accuracy of 96.25%, sensitivity of 95.12%, specificity of 97.44%, precision of 97.50%, and F1 score of 96.30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘚嘚完成签到,获得积分10
10秒前
13秒前
粥粥sqk发布了新的文献求助10
17秒前
上官若男应助wwwwww采纳,获得10
20秒前
兴奋的台灯完成签到 ,获得积分10
21秒前
taku完成签到 ,获得积分10
21秒前
FashionBoy应助Efaith采纳,获得10
36秒前
儒雅的城完成签到,获得积分20
38秒前
43秒前
科研通AI2S应助zqy采纳,获得10
43秒前
44秒前
Efaith完成签到,获得积分20
44秒前
Efaith发布了新的文献求助10
47秒前
www发布了新的文献求助10
49秒前
www完成签到,获得积分10
56秒前
斯文败类应助科研通管家采纳,获得10
58秒前
FashionBoy应助科研通管家采纳,获得10
58秒前
英姑应助科研通管家采纳,获得10
58秒前
高伟杰完成签到,获得积分10
59秒前
1分钟前
wwwwww发布了新的文献求助10
1分钟前
1分钟前
小王爱看文献完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
斯文败类应助我很厉害的采纳,获得10
1分钟前
samantha发布了新的文献求助10
1分钟前
1分钟前
深情安青应助SiboN采纳,获得10
1分钟前
blenx完成签到,获得积分10
1分钟前
科研通AI6应助Geass采纳,获得10
1分钟前
浮游应助喜悦兔子采纳,获得10
1分钟前
wwwwww完成签到,获得积分10
2分钟前
科研通AI6应助闪闪皮卡丘采纳,获得10
2分钟前
科研通AI6应助经冰夏采纳,获得10
2分钟前
肚子幽伤完成签到,获得积分10
2分钟前
木子完成签到 ,获得积分10
2分钟前
NexusExplorer应助饱满的一德采纳,获得10
2分钟前
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334964
求助须知:如何正确求助?哪些是违规求助? 4472880
关于积分的说明 13920965
捐赠科研通 4366897
什么是DOI,文献DOI怎么找? 2399345
邀请新用户注册赠送积分活动 1392415
关于科研通互助平台的介绍 1363445