Localized and Balanced Efficient Incomplete Multi-view Clustering

聚类分析 约束聚类 计算机科学 相关聚类 共识聚类 CURE数据聚类算法 模糊聚类 树冠聚类算法 数据挖掘 约束(计算机辅助设计) 人工智能 数据流聚类 图形 代表(政治) 机器学习 理论计算机科学 数学 政治 政治学 几何学 法学
作者
Jiangtao Wen,Gehui Xu,Chengliang Liu,Bob Zhang,Chao Huang,Wei Wang,Yong Xu
标识
DOI:10.1145/3581783.3612545
摘要

In recent years, many incomplete multi-view clustering methods have been proposed to address the challenging unsupervised clustering issue on the multi-view data with missing views. However, most of the existing works are inapplicable to large-scale clustering task and their clustering results are unstable since these methods have high computational complexities and their results are produced by kmeans rather than their designed learning models. In this paper, we propose a new one-step incomplete multi-view clustering model, called Localized and Balanced Incomplete Multi-view Clustering (LBIMVC), to address these issues. Specifically, LBIMVC develops a new graph regularized incomplete multi-matrix-factorization model to obtain the unique clustering result by learning a consensus probability representation, where each element of the consensus representation can directly reflect the probability of the corresponding sample to the class. In addition, the proposed graph regularized model integrates geometric preserving and consensus representation learning into one term without introducing any extra constraint terms and parameters to explore the structure of data. Moreover, to avoid that samples are over divided into a few clusters, a balanced constraint is introduced to the model. Experimental results on four databases demonstrate that our method not only obtains competitive clustering performance, but also performs faster than some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彩色的老五完成签到,获得积分10
1秒前
Ava应助迅语采纳,获得10
1秒前
2秒前
3秒前
4秒前
cheers发布了新的文献求助10
4秒前
5秒前
skyer应助QDL采纳,获得10
5秒前
5秒前
科研通AI2S应助waoller1采纳,获得10
5秒前
5秒前
回鱼发布了新的文献求助10
5秒前
刚睡醒完成签到,获得积分20
6秒前
water应助知名不具采纳,获得10
6秒前
华仔应助知名不具采纳,获得10
6秒前
6秒前
7秒前
大个应助kyJYbs采纳,获得10
7秒前
紧张的书本完成签到,获得积分20
8秒前
文安完成签到,获得积分10
8秒前
8秒前
哦哦哦完成签到,获得积分20
9秒前
刚睡醒发布了新的文献求助10
9秒前
汪丽娜完成签到,获得积分10
9秒前
cheers完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
kreys发布了新的文献求助20
11秒前
11秒前
11秒前
11秒前
12秒前
鸦紗完成签到,获得积分20
12秒前
12秒前
now发布了新的文献求助10
12秒前
12秒前
大模型应助LY采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126