Continuous Pseudo-Label Rectified Domain Adaptive Semantic Segmentation with Implicit Neural Representations

计算机科学 整改 人工智能 分割 领域(数学分析) 模式识别(心理学) 代表(政治) 适应(眼睛) 域适应 计算机视觉 数学 数学分析 功率(物理) 物理 光学 量子力学 政治 政治学 分类器(UML) 法学
作者
Rui Gong,Qin Wang,Martin Danelljan,Dengxin Dai,Luc Van Gool
标识
DOI:10.1109/cvpr52729.2023.00698
摘要

Unsupervised domain adaptation (UDA) for semantic segmentation aims at improving the model performance on the unlabeled target domain by leveraging a labeled source domain. Existing approaches have achieved impressive progress by utilizing pseudo-labels on the unlabeled target-domain images. Yet the low-quality pseudo-labels, arising from the domain discrepancy, inevitably hinder the adaptation. This calls for effective and accurate approaches to estimating the reliability of the pseudo-labels, in order to rectify them. In this paper, we propose to estimate the rectification values of the predicted pseudo-labels with implicit neural representations. We view the rectification value as a signal defined over the continuous spatial domain. Taking an image coordinate and the nearby deep features as inputs, the rectification value at a given coordinate is predicted as an output. This allows us to achieve high-resolution and detailed rectification values estimation, important for accurate pseudo-label generation at mask boundaries in particular. The rectified pseudo-labels are then leveraged in our rectification-aware mixture model (RMM) to be learned end-to-end and help the adaptation. We demonstrate the effectiveness of our approach on different UDA benchmarks, including synthetic-to-real and day-to-night. Our approach achieves superior results compared to state-of-the-art. The implementation is available at https://github.com/ETHRuiGong/IR2F.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定雁开发布了新的文献求助10
刚刚
tianny发布了新的文献求助10
刚刚
111111111发布了新的文献求助10
1秒前
Mian发布了新的文献求助10
1秒前
1秒前
xiuwen完成签到,获得积分10
2秒前
TOMORI酱完成签到,获得积分10
5秒前
justin发布了新的文献求助10
5秒前
皮卡丘完成签到 ,获得积分10
6秒前
6秒前
TT发布了新的文献求助10
7秒前
夜空的光芒完成签到 ,获得积分10
8秒前
8秒前
乐一李完成签到,获得积分10
8秒前
会神完成签到,获得积分20
9秒前
天天快乐应助远方采纳,获得10
11秒前
烟花应助liuq采纳,获得10
11秒前
lixl0725完成签到 ,获得积分10
12秒前
专注秋尽发布了新的文献求助10
12秒前
科研小民工应助研友_LMg7PZ采纳,获得30
13秒前
宸哥完成签到,获得积分10
13秒前
眯眯眼的衬衫应助yanyan采纳,获得10
15秒前
Yue完成签到 ,获得积分10
15秒前
无限的含羞草完成签到,获得积分10
16秒前
大个应助WZ0904采纳,获得10
17秒前
Sofia发布了新的文献求助60
20秒前
21秒前
橘子姐姐发布了新的文献求助10
22秒前
yanyan完成签到,获得积分10
23秒前
TT完成签到,获得积分10
24秒前
24秒前
了然完成签到 ,获得积分10
25秒前
jxp完成签到,获得积分10
25秒前
jojo完成签到 ,获得积分10
26秒前
26秒前
勤劳落雁完成签到 ,获得积分10
26秒前
29秒前
爆米花应助科研通管家采纳,获得30
29秒前
顾矜应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808