CT imaging-based radiomics signatures improve prognosis prediction in postoperative colorectal cancer

列线图 医学 无线电技术 结直肠癌 比例危险模型 Lasso(编程语言) 放射科 肿瘤科 内科学 癌症 万维网 计算机科学
作者
Yan Kong,Muchen Xu,Xianding Wei,Danqi Qian,Yuan Yin,Zhaohui Huang,Wenchao Gu,Leyuan Zhou
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (6): 1281-1294 被引量:2
标识
DOI:10.3233/xst-230090
摘要

To investigate the use of non-contrast-enhanced (NCE) and contrast-enhanced (CE) CT radiomics signatures (Rad-scores) as prognostic factors to help improve the prediction of the overall survival (OS) of postoperative colorectal cancer (CRC) patients.A retrospective analysis was performed on 65 CRC patients who underwent surgical resection in our hospital as the training set, and 19 patient images retrieved from The Cancer Imaging Archive (TCIA) as the external validation set. In training, radiomics features were extracted from the preoperative NCE/CE-CT, then selected through 5-fold cross validation LASSO Cox method and used to construct Rad-scores. Models derived from Rad-scores and clinical factors were constructed and compared. Kaplan-Meier analyses were also used to compare the survival probability between the high- and low-risk Rad-score groups. Finally, a nomogram was developed to predict the OS.In training, a clinical model achieved a C-index of 0.796 (95% CI: 0.722-0.870), while clinical and two Rad-scores combined model performed the best, achieving a C-index of 0.821 (95% CI: 0.743-0.899). Furthermore, the models with the CE-CT Rad-score yielded slightly better performance than that of NCE-CT in training. For the combined model with CE-CT Rad-scores, a C-index of 0.818 (95% CI: 0.742-0.894) and 0.774 (95% CI: 0.556-0.992) were achieved in both the training and validation sets. Kaplan-Meier analysis demonstrated a significant difference in survival probability between the high- and low-risk groups. Finally, the areas under the receiver operating characteristics (ROC) curves for the model were 0.904, 0.777, and 0.843 for 1, 3, and 5-year survival, respectively.NCE-CT or CE-CT radiomics and clinical combined models can predict the OS for CRC patients, and both Rad-scores are recommended to be included when available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
www发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
shotgod发布了新的文献求助10
2秒前
ling玲完成签到,获得积分10
2秒前
奔奔发布了新的文献求助10
2秒前
SweepingMonk应助虚心盼晴采纳,获得10
3秒前
4秒前
汉堡包应助XXF采纳,获得10
4秒前
wzh完成签到,获得积分10
4秒前
海底落日完成签到,获得积分20
4秒前
5秒前
科研通AI5应助123采纳,获得30
5秒前
烟花应助pi采纳,获得10
6秒前
汉堡包应助小木木壮采纳,获得10
6秒前
6秒前
yl发布了新的文献求助30
6秒前
菲菲呀发布了新的文献求助10
6秒前
6秒前
科研通AI5应助禾泽采纳,获得30
7秒前
坚强的樱发布了新的文献求助10
7秒前
英俊梦槐完成签到,获得积分10
7秒前
123发布了新的文献求助10
8秒前
8秒前
8秒前
白泽发布了新的文献求助10
9秒前
一条贤与发布了新的文献求助20
9秒前
9秒前
英俊谷秋完成签到,获得积分10
9秒前
9秒前
通~发布了新的文献求助10
10秒前
所所应助火星探险采纳,获得10
10秒前
10秒前
Guoyeye完成签到,获得积分10
10秒前
11秒前
阿芙乐尔完成签到 ,获得积分10
11秒前
_呱_发布了新的文献求助30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794