CT imaging-based radiomics signatures improve prognosis prediction in postoperative colorectal cancer

列线图 医学 无线电技术 结直肠癌 比例危险模型 Lasso(编程语言) 放射科 肿瘤科 内科学 癌症 万维网 计算机科学
作者
Yan Kong,Muchen Xu,Xianding Wei,Danqi Qian,Yuan Yin,Zhaohui Huang,Wenchao Gu,Leyuan Zhou
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:31 (6): 1281-1294 被引量:2
标识
DOI:10.3233/xst-230090
摘要

To investigate the use of non-contrast-enhanced (NCE) and contrast-enhanced (CE) CT radiomics signatures (Rad-scores) as prognostic factors to help improve the prediction of the overall survival (OS) of postoperative colorectal cancer (CRC) patients.A retrospective analysis was performed on 65 CRC patients who underwent surgical resection in our hospital as the training set, and 19 patient images retrieved from The Cancer Imaging Archive (TCIA) as the external validation set. In training, radiomics features were extracted from the preoperative NCE/CE-CT, then selected through 5-fold cross validation LASSO Cox method and used to construct Rad-scores. Models derived from Rad-scores and clinical factors were constructed and compared. Kaplan-Meier analyses were also used to compare the survival probability between the high- and low-risk Rad-score groups. Finally, a nomogram was developed to predict the OS.In training, a clinical model achieved a C-index of 0.796 (95% CI: 0.722-0.870), while clinical and two Rad-scores combined model performed the best, achieving a C-index of 0.821 (95% CI: 0.743-0.899). Furthermore, the models with the CE-CT Rad-score yielded slightly better performance than that of NCE-CT in training. For the combined model with CE-CT Rad-scores, a C-index of 0.818 (95% CI: 0.742-0.894) and 0.774 (95% CI: 0.556-0.992) were achieved in both the training and validation sets. Kaplan-Meier analysis demonstrated a significant difference in survival probability between the high- and low-risk groups. Finally, the areas under the receiver operating characteristics (ROC) curves for the model were 0.904, 0.777, and 0.843 for 1, 3, and 5-year survival, respectively.NCE-CT or CE-CT radiomics and clinical combined models can predict the OS for CRC patients, and both Rad-scores are recommended to be included when available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XT完成签到 ,获得积分10
2秒前
ohnono完成签到,获得积分10
3秒前
沙子完成签到 ,获得积分0
5秒前
我的小名叫雷锋完成签到 ,获得积分10
6秒前
梅花易数完成签到,获得积分10
8秒前
Alex-Song完成签到 ,获得积分0
9秒前
沉静书翠完成签到 ,获得积分10
9秒前
木木完成签到,获得积分10
9秒前
111111完成签到,获得积分10
17秒前
hellzhu完成签到,获得积分10
17秒前
枫枫829完成签到 ,获得积分10
18秒前
LiShin完成签到 ,获得积分10
18秒前
21秒前
LLLLLL完成签到,获得积分10
21秒前
静默完成签到 ,获得积分10
24秒前
欣喜的薯片完成签到 ,获得积分10
30秒前
32秒前
可靠绮琴发布了新的文献求助10
36秒前
38秒前
晴心发布了新的文献求助10
42秒前
eternal_dreams完成签到 ,获得积分10
42秒前
lazyg5403完成签到,获得积分10
42秒前
leo发布了新的文献求助10
43秒前
jiangjiang完成签到 ,获得积分10
43秒前
yupingqin完成签到 ,获得积分10
44秒前
panpanliumin完成签到,获得积分0
45秒前
研友_ngqjz8完成签到,获得积分10
47秒前
嘟嘟豆806完成签到 ,获得积分10
47秒前
guang5210完成签到,获得积分10
47秒前
51秒前
刘刘完成签到,获得积分10
52秒前
55秒前
徐悦完成签到,获得积分10
55秒前
你莫停完成签到,获得积分10
1分钟前
愉快的宛秋完成签到,获得积分10
1分钟前
落雪慕卿颜完成签到,获得积分10
1分钟前
银海里的玫瑰_完成签到 ,获得积分10
1分钟前
搭碰完成签到,获得积分0
1分钟前
支雨泽完成签到,获得积分10
1分钟前
奋斗跳跳糖完成签到,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335484
求助须知:如何正确求助?哪些是违规求助? 2964524
关于积分的说明 8614307
捐赠科研通 2643432
什么是DOI,文献DOI怎么找? 1447485
科研通“疑难数据库(出版商)”最低求助积分说明 670664
邀请新用户注册赠送积分活动 659032