已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Severe aortic stenosis detection by deep learning applied to echocardiography

医学 接收机工作特性 胸骨旁线 深度学习 狭窄 心脏病学 主动脉瓣狭窄 内科学 人工智能 放射科 计算机科学
作者
Gregory Holste,Evangelos Oikonomou,Bobak J. Mortazavi,Andreas Coppi,Kamil F. Faridi,Edward J. Miller,John K. Forrest,Robert L. McNamara,Lucila Ohno-Machado,Neal Yuan,Aakriti Gupta,David Ouyang,Harlan M. Krumholz,Zhangyang Wang,Rohan Khera
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (43): 4592-4604 被引量:5
标识
DOI:10.1093/eurheartj/ehad456
摘要

Abstract Background and Aims Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity and mortality but requires skilled examination with Doppler imaging. This study reports the development and validation of a novel deep learning model that relies on two-dimensional (2D) parasternal long axis videos from transthoracic echocardiography without Doppler imaging to identify severe AS, suitable for point-of-care ultrasonography. Methods and results In a training set of 5257 studies (17 570 videos) from 2016 to 2020 [Yale-New Haven Hospital (YNHH), Connecticut], an ensemble of three-dimensional convolutional neural networks was developed to detect severe AS, leveraging self-supervised contrastive pretraining for label-efficient model development. This deep learning model was validated in a temporally distinct set of 2040 consecutive studies from 2021 from YNHH as well as two geographically distinct cohorts of 4226 and 3072 studies, from California and other hospitals in New England, respectively. The deep learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.978 (95% CI: 0.966, 0.988) for detecting severe AS in the temporally distinct test set, maintaining its diagnostic performance in geographically distinct cohorts [0.952 AUROC (95% CI: 0.941, 0.963) in California and 0.942 AUROC (95% CI: 0.909, 0.966) in New England]. The model was interpretable with saliency maps identifying the aortic valve, mitral annulus, and left atrium as the predictive regions. Among non-severe AS cases, predicted probabilities were associated with worse quantitative metrics of AS suggesting an association with various stages of AS severity. Conclusion This study developed and externally validated an automated approach for severe AS detection using single-view 2D echocardiography, with potential utility for point-of-care screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aixue发布了新的文献求助10
刚刚
搜集达人应助似宁采纳,获得10
刚刚
1秒前
奇妙淞发布了新的文献求助10
2秒前
3秒前
冷傲翠桃发布了新的文献求助10
6秒前
7秒前
从容芮应助科研通管家采纳,获得20
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
加菲丰丰应助科研通管家采纳,获得20
7秒前
晴云发布了新的文献求助10
10秒前
团装完成签到 ,获得积分10
11秒前
科研菜鸟发布了新的文献求助10
11秒前
打打应助樱桃小完犊子采纳,获得10
12秒前
发发发完成签到,获得积分10
13秒前
14秒前
15秒前
17秒前
18秒前
sukasuka发布了新的文献求助10
18秒前
tgoutgou发布了新的文献求助20
19秒前
落寞臻发布了新的文献求助10
21秒前
顾矜应助夜漫雪采纳,获得10
21秒前
22秒前
传奇3应助aixue采纳,获得10
22秒前
22秒前
Murphy发布了新的文献求助10
27秒前
28秒前
nn发布了新的文献求助10
29秒前
Amber完成签到 ,获得积分10
32秒前
lwh完成签到,获得积分10
33秒前
Pursue完成签到,获得积分10
34秒前
34秒前
38秒前
善学以致用应助活泼的沅采纳,获得10
38秒前
39秒前
42秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883145
捐赠科研通 2468333
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601963