Severe aortic stenosis detection by deep learning applied to echocardiography

医学 接收机工作特性 胸骨旁线 深度学习 狭窄 心脏病学 主动脉瓣狭窄 内科学 人工智能 放射科 计算机科学
作者
Gregory Holste,Evangelos Oikonomou,Bobak J. Mortazavi,Andreas Coppi,Kamil F. Faridi,Edward J. Miller,John K. Forrest,Robert L. McNamara,Lucila Ohno-Machado,Neal Yuan,Aakriti Gupta,David Ouyang,Harlan M. Krumholz,Zhangyang Wang,Rohan Khera
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (43): 4592-4604 被引量:5
标识
DOI:10.1093/eurheartj/ehad456
摘要

Abstract Background and Aims Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity and mortality but requires skilled examination with Doppler imaging. This study reports the development and validation of a novel deep learning model that relies on two-dimensional (2D) parasternal long axis videos from transthoracic echocardiography without Doppler imaging to identify severe AS, suitable for point-of-care ultrasonography. Methods and results In a training set of 5257 studies (17 570 videos) from 2016 to 2020 [Yale-New Haven Hospital (YNHH), Connecticut], an ensemble of three-dimensional convolutional neural networks was developed to detect severe AS, leveraging self-supervised contrastive pretraining for label-efficient model development. This deep learning model was validated in a temporally distinct set of 2040 consecutive studies from 2021 from YNHH as well as two geographically distinct cohorts of 4226 and 3072 studies, from California and other hospitals in New England, respectively. The deep learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.978 (95% CI: 0.966, 0.988) for detecting severe AS in the temporally distinct test set, maintaining its diagnostic performance in geographically distinct cohorts [0.952 AUROC (95% CI: 0.941, 0.963) in California and 0.942 AUROC (95% CI: 0.909, 0.966) in New England]. The model was interpretable with saliency maps identifying the aortic valve, mitral annulus, and left atrium as the predictive regions. Among non-severe AS cases, predicted probabilities were associated with worse quantitative metrics of AS suggesting an association with various stages of AS severity. Conclusion This study developed and externally validated an automated approach for severe AS detection using single-view 2D echocardiography, with potential utility for point-of-care screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mojojo完成签到 ,获得积分10
1秒前
深情口红发布了新的文献求助50
2秒前
Wxxxxx完成签到 ,获得积分10
3秒前
123321关注了科研通微信公众号
3秒前
dani_tian完成签到,获得积分10
4秒前
爆米花应助半拉馒头采纳,获得10
7秒前
8秒前
8秒前
今后应助文艺的连碧采纳,获得10
8秒前
Kin_L完成签到,获得积分10
9秒前
JamesPei应助zzz采纳,获得10
10秒前
大个应助燕子采纳,获得10
10秒前
11秒前
呋喃发布了新的文献求助10
12秒前
謓言完成签到 ,获得积分10
13秒前
dawn完成签到,获得积分10
15秒前
孙朱珠发布了新的文献求助10
16秒前
猪猪hero发布了新的文献求助10
17秒前
17秒前
17秒前
顺心怜寒完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
rrrrrrry发布了新的文献求助10
20秒前
20秒前
yar应助年轻迪奥采纳,获得10
21秒前
木耶关注了科研通微信公众号
22秒前
元谷雪发布了新的文献求助10
23秒前
24秒前
坦率的匪发布了新的文献求助30
24秒前
阔达幻丝发布了新的文献求助30
25秒前
26秒前
27秒前
27秒前
呋喃完成签到,获得积分10
27秒前
27秒前
搜集达人应助kyt采纳,获得10
27秒前
chen发布了新的文献求助10
27秒前
何小珍发布了新的文献求助10
29秒前
九儿完成签到 ,获得积分10
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717