Severe aortic stenosis detection by deep learning applied to echocardiography

医学 接收机工作特性 胸骨旁线 深度学习 狭窄 心脏病学 主动脉瓣狭窄 内科学 人工智能 放射科 计算机科学
作者
Gregory Holste,Evangelos Oikonomou,Bobak J. Mortazavi,Andreas Coppi,Kamil F. Faridi,Edward J. Miller,John K. Forrest,Robert L. McNamara,Lucila Ohno-Machado,Neal Yuan,Aakriti Gupta,David Ouyang,Harlan M. Krumholz,Zhangyang Wang,Rohan Khera
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (43): 4592-4604 被引量:5
标识
DOI:10.1093/eurheartj/ehad456
摘要

Abstract Background and Aims Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity and mortality but requires skilled examination with Doppler imaging. This study reports the development and validation of a novel deep learning model that relies on two-dimensional (2D) parasternal long axis videos from transthoracic echocardiography without Doppler imaging to identify severe AS, suitable for point-of-care ultrasonography. Methods and results In a training set of 5257 studies (17 570 videos) from 2016 to 2020 [Yale-New Haven Hospital (YNHH), Connecticut], an ensemble of three-dimensional convolutional neural networks was developed to detect severe AS, leveraging self-supervised contrastive pretraining for label-efficient model development. This deep learning model was validated in a temporally distinct set of 2040 consecutive studies from 2021 from YNHH as well as two geographically distinct cohorts of 4226 and 3072 studies, from California and other hospitals in New England, respectively. The deep learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.978 (95% CI: 0.966, 0.988) for detecting severe AS in the temporally distinct test set, maintaining its diagnostic performance in geographically distinct cohorts [0.952 AUROC (95% CI: 0.941, 0.963) in California and 0.942 AUROC (95% CI: 0.909, 0.966) in New England]. The model was interpretable with saliency maps identifying the aortic valve, mitral annulus, and left atrium as the predictive regions. Among non-severe AS cases, predicted probabilities were associated with worse quantitative metrics of AS suggesting an association with various stages of AS severity. Conclusion This study developed and externally validated an automated approach for severe AS detection using single-view 2D echocardiography, with potential utility for point-of-care screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
WilsonT完成签到,获得积分10
刚刚
SDS发布了新的文献求助10
1秒前
LLL发布了新的文献求助10
1秒前
爆米花应助娜行采纳,获得10
2秒前
2秒前
虫二队长完成签到,获得积分10
2秒前
2秒前
manan发布了新的文献求助10
2秒前
铸一字错完成签到,获得积分10
2秒前
2秒前
诚c完成签到,获得积分10
2秒前
正在输入中应助niu1采纳,获得10
3秒前
3秒前
王大帅哥完成签到,获得积分10
3秒前
qianhuxinyu完成签到,获得积分10
3秒前
3秒前
烟雾发布了新的文献求助10
3秒前
4秒前
宁听白完成签到,获得积分10
4秒前
yinxx完成签到,获得积分10
4秒前
4秒前
知123完成签到,获得积分10
5秒前
小鳄鱼一只完成签到,获得积分10
5秒前
一叶舟完成签到,获得积分10
6秒前
MADKAI发布了新的文献求助10
6秒前
吉势甘完成签到,获得积分10
6秒前
Tira发布了新的文献求助10
6秒前
6秒前
酷波er应助研友_nPPERn采纳,获得10
6秒前
顾己发布了新的文献求助20
6秒前
么系么系发布了新的文献求助10
6秒前
啊大大哇关注了科研通微信公众号
7秒前
7秒前
7秒前
Jenny应助追寻夜香采纳,获得10
8秒前
8秒前
xiuxiu_27发布了新的文献求助10
8秒前
万能图书馆应助一一采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678