作者
Yogita Singh,Upendra Kumar,Sourav Panigrahi,Priyanka Balyan,Sheetal Mehla,Pooja Sihag,Vijeta Sagwal,Krishna Pal Singh,Jason C. White,Om Parkash Dhankher
摘要
Plant tissue culture is the primary, fundamental, and applied aspect of plant biology. It is an indispensable and valuable technique for investigating morphogenesis, embryogenesis, clonal propagation, crop improvements, generation of pathogen-free plants, gene transfer and expression, and the production of secondary metabolites. The extensive use of various nanoparticles (NPs) in fields such as cosmetics, energy, medicine, pharmaceuticals, electronics, agriculture, and biotechnology have demonstrated positive impacts in microbial decontamination, callus differentiation, organogenesis, somatic variations, biotransformation, cryopreservation, and enhanced synthesis of bioactive compounds. This review summarizes the current state of knowledge with regard to the use of nanoparticles in plant tissue culture, with a particular focus on the beneficial outcomes. The positive (beneficial) and negative (toxic) effects of engineered NPs in tissue culture medium, delivery of transgenes, NPs toxicity concerns, safety issues, and potential hazards arising from utilization of nanomaterials in agriculture through plant tissue culture are discussed in detail, along with the future prospects for these applications. In addition, the potential use of novel nanomaterials such as graphene, graphite, dendrimers, quantum dots, and carbon nanotubes as well as unique metal or metalloid NPs are proposed. Further, the potential mechanisms underlying NPs elicitation of tissue culture response in different applications are critically evaluated. The potential of these approaches in plant nanobiotechnology is only now becoming understood and it is clear that the role of these strategies in sustainably increasing crop production to combat global food security and safety in a changing climate will be significant.