超亲水性
润湿
材料科学
膜
接触角
化学工程
电解
纳米技术
电极
复合材料
电解质
化学
生物化学
物理化学
工程类
作者
Shaopeng Gan,Hui Li,Xu Zhu,Xilu Liu,Kangxing Wei,Lei Zhu,Baojun Wei,Xiaoming Luo,Jianqiang Zhang,Qingzhong Xue
标识
DOI:10.1002/adfm.202305975
摘要
Abstract The tunable wettability by pH‐stimulus has great potential in liquid adhesion, transport, collection, and separation due to its rapid response and wide control range. However, achieving pH‐regulated wettability on the selected region of material without acid–base contamination presents a distinct challenge for the existing methods. Here, a scalable conductive network membrane is prepared with switchable wettability by regulating interfacial pH. The generation and diffusion of interfacial pH on the selected region of the membrane are regulated through the confinement electrolysis process, which is adapted to both spatial arrangements of the conductive network and the electrical potential. By regulating the interfacial pH (>13), the wettability of the selected region can change from superhydrophobicity (Water contact angle = 150°) to superhydrophilicity/underwater superoleophobicity (Water contact angle = 0°) without additional reagent in 30 s under 15 V. Based on the switchable wettability and precise controllability, the prepared membrane can efficiently realize on‐demand oil–water separation (>99%) and in situ extraction‐back extraction. The membrane with switchable wettability is programable and free of acid–base contamination, which may have broad practical application potential in intelligent fluid‐related systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI