Melt stretching and quenching produce low-crystalline biodegradable poly(lactic acid) filled with β-form shish for highly improved mechanical toughness

材料科学 韧性 极限抗拉强度 微观结构 猝灭(荧光) 复合材料 结晶 延展性(地球科学) 化学工程 蠕动 量子力学 荧光 物理 工程类
作者
Zhen Zhang,Shanlin Cui,Ruixue Ma,Qiuyang Ye,Jiahui Sun,Yaming Wang,Chuntai Liu,Zhen Wang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:251: 126220-126220 被引量:5
标识
DOI:10.1016/j.ijbiomac.2023.126220
摘要

High-toughness biodegradable poly(lactic acid) (PLA) has always been intensively pursued on the way of replacing traditional petroleum-based plastics. Regulating microstructures to achieve self-toughening holds great promise due to avoidance of incorporating other heterogeneous components. Herein, we propose a straightforward and effective way to tailor microstructures and properties of PLA through melt-stretching and quenching of slightly crosslinked samples. The melt stretching drives chains orientation and crystallization at high temperature, while the quenching followed can freeze the crystallization process to any stage. For the first time, we prepare a type of transparent and low-crystalline PLA filled with rod-like β-form shish, which displays an outstanding tensile toughness, almost 17 times that of the conventional technique-processed one. This mechanical superiority is enabled by an integration of high ductility due to oriented chain network, and high tensile stress endowed by nanofibrous filler's role of β-form shish. Furthermore, the mechanically toughened PLA is demonstrated to generate the richest micro-cracks and shear bands under loading, which can effectively dissipate the deformational energy and underlie the high toughness. This work opens a new prospect for the bottom-up design of high-performance bio-based PLA materials that are tough, ductile and transparent by precise microstructural regulation through scalable melt processing route.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助嘻嘻采纳,获得10
刚刚
科研通AI5应助小只bb采纳,获得30
刚刚
yyyy发布了新的文献求助10
刚刚
2023AKY完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
彭于晏应助惠惠采纳,获得10
3秒前
风魂剑主完成签到,获得积分10
4秒前
yryzst9899发布了新的文献求助10
4秒前
5秒前
飘逸小笼包完成签到,获得积分10
5秒前
科研小郑完成签到,获得积分10
5秒前
CipherSage应助熊boy采纳,获得10
5秒前
XXGG完成签到 ,获得积分10
6秒前
大个应助舒心赛凤采纳,获得10
6秒前
晨曦发布了新的文献求助10
7秒前
7秒前
ff0110完成签到,获得积分10
8秒前
星辰大海应助苹果萧采纳,获得10
8秒前
徐徐完成签到,获得积分10
8秒前
哈哈哈哈发布了新的文献求助10
9秒前
请叫我风吹麦浪应助yoon采纳,获得10
9秒前
认真的青柠完成签到,获得积分10
9秒前
bbanshan完成签到,获得积分10
9秒前
卫生纸发布了新的文献求助10
9秒前
9秒前
10秒前
奔奔完成签到,获得积分10
10秒前
脑洞疼应助李来仪采纳,获得10
11秒前
11秒前
11秒前
demonox发布了新的文献求助10
11秒前
jbhb发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
范月月完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794