Melt stretching and quenching produce low-crystalline biodegradable poly(lactic acid) filled with β-form shish for highly improved mechanical toughness

材料科学 韧性 极限抗拉强度 微观结构 猝灭(荧光) 复合材料 结晶 延展性(地球科学) 化学工程 蠕动 量子力学 荧光 物理 工程类
作者
Zhen Zhang,Shanlin Cui,Ruixue Ma,Qiuyang Ye,Jiahui Sun,Yaming Wang,Chuntai Liu,Zhen Wang
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:251: 126220-126220 被引量:6
标识
DOI:10.1016/j.ijbiomac.2023.126220
摘要

High-toughness biodegradable poly(lactic acid) (PLA) has always been intensively pursued on the way of replacing traditional petroleum-based plastics. Regulating microstructures to achieve self-toughening holds great promise due to avoidance of incorporating other heterogeneous components. Herein, we propose a straightforward and effective way to tailor microstructures and properties of PLA through melt-stretching and quenching of slightly crosslinked samples. The melt stretching drives chains orientation and crystallization at high temperature, while the quenching followed can freeze the crystallization process to any stage. For the first time, we prepare a type of transparent and low-crystalline PLA filled with rod-like β-form shish, which displays an outstanding tensile toughness, almost 17 times that of the conventional technique-processed one. This mechanical superiority is enabled by an integration of high ductility due to oriented chain network, and high tensile stress endowed by nanofibrous filler's role of β-form shish. Furthermore, the mechanically toughened PLA is demonstrated to generate the richest micro-cracks and shear bands under loading, which can effectively dissipate the deformational energy and underlie the high toughness. This work opens a new prospect for the bottom-up design of high-performance bio-based PLA materials that are tough, ductile and transparent by precise microstructural regulation through scalable melt processing route.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
852应助奋斗的忆之采纳,获得10
2秒前
kakin完成签到,获得积分10
2秒前
2秒前
3秒前
在水一方应助清新的Q采纳,获得10
3秒前
wanci应助vadfdfb采纳,获得10
4秒前
风趣的语蕊完成签到,获得积分10
6秒前
秦淮完成签到,获得积分10
7秒前
bingbing发布了新的文献求助10
7秒前
7秒前
AKKKK完成签到,获得积分10
7秒前
幽默的厉完成签到,获得积分10
8秒前
8秒前
9秒前
留胡子的霖完成签到,获得积分10
9秒前
9秒前
9秒前
迅速初柳发布了新的文献求助10
9秒前
小杰发布了新的文献求助10
10秒前
10秒前
10秒前
标致的战斗机完成签到,获得积分10
11秒前
12秒前
joyemovie发布了新的文献求助10
13秒前
Jinnnnn完成签到,获得积分10
13秒前
huang完成签到,获得积分10
14秒前
14秒前
14秒前
wxx发布了新的文献求助10
14秒前
15秒前
清新的Q发布了新的文献求助10
16秒前
17秒前
洋子发布了新的文献求助10
17秒前
18秒前
帅气男孩发布了新的文献求助30
18秒前
18秒前
18秒前
垃圾桶发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891