Dynamic Inference via Localizing Semantic Intervals in Sensor Data for Budget-Tunable Activity Recognition

推论 计算机科学 活动识别 判别式 人工智能 机器学习 卷积神经网络 无线传感器网络 冗余(工程) 数据挖掘 模式识别(心理学) 计算机网络 操作系统
作者
Can Bu,Lei Zhang,Hengtao Cui,Guangyu Yang,Hao Wu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3801-3813 被引量:11
标识
DOI:10.1109/tii.2023.3315773
摘要

During recent years, deep convolutional neural networks have demonstrated dominant performance in human activity recognition (HAR) using wearable sensors. However, they often come at high computational cost when fueled with fixed-length sliding window. This article primarily aims to accelerate activity inference from a novel perspective of reducing temporal redundancy in sensor data. Inspired by the fact that not all time intervals within a window are activity-relevant, we formulate the activity prediction problem as a dynamic inference process by continuously attending to a sequence of small activity-discriminative intervals, which are selected from an original window by progressively predicting the discriminative importance of each interval with an interpretable interval proposal network. The dynamic process can adaptively decide when to halt for each individual sample, which considerably avoids excessive computation by letting "easy" activity exit as early as possible while progressively focusing on small salient intervals for "hard" activity. Given a limited budget, the accuracy-cost tradeoff can be flexibly and precisely controlled via tuning confidence thresholds online without requiring to be retrained from scratch—a practical requirement in real-world HAR applications. Extensive experiments on several standard benchmarks including University of California-Irvine-Human Activity Recognition (UCI-HAR), wireless sensor data mining (WISDM), University of Southern California-Human Activity Dataset (USC-HAD), and Weakly Labeled dataset demonstrate that our dynamic inference process significantly outperforms previous static methods according to theoretical and practical computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真的莫茗完成签到,获得积分10
刚刚
彭于晏应助超11采纳,获得10
1秒前
1秒前
gavincsu发布了新的文献求助10
1秒前
KSGGS给KSGGS的求助进行了留言
1秒前
flow驳回了Aria应助
1秒前
lixiunan完成签到,获得积分10
1秒前
1秒前
dildil发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
边瑞明完成签到,获得积分10
4秒前
Wang发布了新的文献求助10
5秒前
Jenny应助拼搏思卉采纳,获得10
5秒前
5秒前
神勇的雅香应助不喝可乐采纳,获得10
5秒前
清脆的白开水完成签到,获得积分10
5秒前
Hello应助善良过客采纳,获得10
5秒前
现实的曼荷完成签到,获得积分10
5秒前
5秒前
6秒前
zyyyy完成签到,获得积分10
6秒前
dd完成签到,获得积分20
6秒前
6秒前
混子发布了新的文献求助10
6秒前
HYG完成签到,获得积分10
7秒前
二橦完成签到 ,获得积分10
7秒前
熊博士完成签到,获得积分10
8秒前
哲000发布了新的文献求助10
8秒前
丰富的世界完成签到 ,获得积分10
8秒前
9秒前
9秒前
路漫漫其修远兮完成签到,获得积分10
9秒前
GGZ发布了新的文献求助10
9秒前
啦啦啦发布了新的文献求助10
9秒前
10秒前
阿坤完成签到,获得积分10
11秒前
dd发布了新的文献求助10
12秒前
桐桐应助小智采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759