Dynamic Inference via Localizing Semantic Intervals in Sensor Data for Budget-Tunable Activity Recognition

推论 计算机科学 活动识别 判别式 人工智能 机器学习 卷积神经网络 无线传感器网络 冗余(工程) 数据挖掘 模式识别(心理学) 计算机网络 操作系统
作者
Can Bu,Lei Zhang,Hengtao Cui,Guangyu Yang,Hao Wu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3801-3813 被引量:11
标识
DOI:10.1109/tii.2023.3315773
摘要

During recent years, deep convolutional neural networks have demonstrated dominant performance in human activity recognition (HAR) using wearable sensors. However, they often come at high computational cost when fueled with fixed-length sliding window. This article primarily aims to accelerate activity inference from a novel perspective of reducing temporal redundancy in sensor data. Inspired by the fact that not all time intervals within a window are activity-relevant, we formulate the activity prediction problem as a dynamic inference process by continuously attending to a sequence of small activity-discriminative intervals, which are selected from an original window by progressively predicting the discriminative importance of each interval with an interpretable interval proposal network. The dynamic process can adaptively decide when to halt for each individual sample, which considerably avoids excessive computation by letting "easy" activity exit as early as possible while progressively focusing on small salient intervals for "hard" activity. Given a limited budget, the accuracy-cost tradeoff can be flexibly and precisely controlled via tuning confidence thresholds online without requiring to be retrained from scratch—a practical requirement in real-world HAR applications. Extensive experiments on several standard benchmarks including University of California-Irvine-Human Activity Recognition (UCI-HAR), wireless sensor data mining (WISDM), University of Southern California-Human Activity Dataset (USC-HAD), and Weakly Labeled dataset demonstrate that our dynamic inference process significantly outperforms previous static methods according to theoretical and practical computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速的幻雪完成签到 ,获得积分10
2秒前
lmm6701完成签到,获得积分10
4秒前
PPSlu完成签到,获得积分10
11秒前
TUTU完成签到 ,获得积分10
12秒前
研友_VZGVzn完成签到,获得积分10
16秒前
腻腻发布了新的文献求助10
18秒前
祁灵枫完成签到,获得积分10
22秒前
申燕婷完成签到 ,获得积分10
23秒前
蔡从安发布了新的文献求助10
25秒前
Asumita完成签到,获得积分10
26秒前
小山己几发布了新的文献求助10
27秒前
盟主完成签到 ,获得积分10
34秒前
wQ1ng应助蔡从安采纳,获得10
35秒前
MENG完成签到,获得积分10
36秒前
Sleven完成签到,获得积分10
37秒前
大力道罡完成签到,获得积分10
38秒前
hhh2018687完成签到,获得积分10
41秒前
木雨亦潇潇完成签到,获得积分10
41秒前
oleskarabach发布了新的文献求助10
44秒前
独特的忆彤完成签到 ,获得积分10
47秒前
笑林完成签到 ,获得积分10
53秒前
彭于晏应助山水之乐采纳,获得10
55秒前
从容的水壶完成签到 ,获得积分10
55秒前
赟yun完成签到,获得积分0
56秒前
Pure完成签到 ,获得积分10
56秒前
吉祥高趙完成签到 ,获得积分10
56秒前
1分钟前
laber完成签到,获得积分0
1分钟前
华仔应助怕黑的金鱼采纳,获得10
1分钟前
Alanni完成签到 ,获得积分10
1分钟前
丸子完成签到 ,获得积分10
1分钟前
34882738完成签到 ,获得积分10
1分钟前
sora完成签到,获得积分10
1分钟前
1分钟前
山水之乐发布了新的文献求助10
1分钟前
jscr完成签到,获得积分10
1分钟前
明理从露完成签到 ,获得积分10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
laber应助科研通管家采纳,获得50
1分钟前
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212175
求助须知:如何正确求助?哪些是违规求助? 4388435
关于积分的说明 13663849
捐赠科研通 4248864
什么是DOI,文献DOI怎么找? 2331208
邀请新用户注册赠送积分活动 1328931
关于科研通互助平台的介绍 1282248