Dynamic Inference via Localizing Semantic Intervals in Sensor Data for Budget-Tunable Activity Recognition

推论 计算机科学 活动识别 判别式 人工智能 机器学习 卷积神经网络 无线传感器网络 冗余(工程) 数据挖掘 模式识别(心理学) 计算机网络 操作系统
作者
Can Bu,Lei Zhang,Hengtao Cui,Guangyu Yang,Hao Wu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3801-3813 被引量:11
标识
DOI:10.1109/tii.2023.3315773
摘要

During recent years, deep convolutional neural networks have demonstrated dominant performance in human activity recognition (HAR) using wearable sensors. However, they often come at high computational cost when fueled with fixed-length sliding window. This article primarily aims to accelerate activity inference from a novel perspective of reducing temporal redundancy in sensor data. Inspired by the fact that not all time intervals within a window are activity-relevant, we formulate the activity prediction problem as a dynamic inference process by continuously attending to a sequence of small activity-discriminative intervals, which are selected from an original window by progressively predicting the discriminative importance of each interval with an interpretable interval proposal network. The dynamic process can adaptively decide when to halt for each individual sample, which considerably avoids excessive computation by letting "easy" activity exit as early as possible while progressively focusing on small salient intervals for "hard" activity. Given a limited budget, the accuracy-cost tradeoff can be flexibly and precisely controlled via tuning confidence thresholds online without requiring to be retrained from scratch—a practical requirement in real-world HAR applications. Extensive experiments on several standard benchmarks including University of California-Irvine-Human Activity Recognition (UCI-HAR), wireless sensor data mining (WISDM), University of Southern California-Human Activity Dataset (USC-HAD), and Weakly Labeled dataset demonstrate that our dynamic inference process significantly outperforms previous static methods according to theoretical and practical computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助默默采纳,获得10
1秒前
coolkid应助猪猪hero采纳,获得10
1秒前
FIN应助猪猪hero采纳,获得30
1秒前
江沫应助猪猪hero采纳,获得10
1秒前
yar应助猪猪hero采纳,获得10
1秒前
SYLH应助猪猪hero采纳,获得10
1秒前
江沫应助猪猪hero采纳,获得10
1秒前
辛辛应助猪猪hero采纳,获得10
1秒前
yookia应助猪猪hero采纳,获得10
1秒前
坦率的匪应助猪猪hero采纳,获得10
1秒前
Jeffery426完成签到,获得积分10
2秒前
大胆嘞完成签到 ,获得积分10
4秒前
酷波er应助zhuzhu采纳,获得10
5秒前
满天星发布了新的文献求助10
6秒前
机灵白桃完成签到,获得积分10
6秒前
popo6150完成签到 ,获得积分10
7秒前
鲤跃发布了新的文献求助10
7秒前
隐形曼青应助aaa采纳,获得10
7秒前
1351567822应助猪猪hero采纳,获得10
8秒前
单薄的夜南应助猪猪hero采纳,获得10
8秒前
老大蒂亚戈应助猪猪hero采纳,获得10
8秒前
老大蒂亚戈应助猪猪hero采纳,获得10
8秒前
41应助猪猪hero采纳,获得10
8秒前
傻傻的凤灵应助猪猪hero采纳,获得10
8秒前
hhhi应助猪猪hero采纳,获得10
8秒前
Akim应助猪猪hero采纳,获得10
8秒前
wdy111应助猪猪hero采纳,获得20
8秒前
Hatexist应助猪猪hero采纳,获得10
8秒前
9秒前
9秒前
10秒前
11秒前
jagger完成签到,获得积分10
11秒前
合适忆南完成签到,获得积分10
11秒前
ghhu发布了新的文献求助10
12秒前
丘比特应助冷傲的罡采纳,获得10
13秒前
14秒前
InaZheng发布了新的文献求助10
14秒前
风_feng发布了新的文献求助10
15秒前
田様应助满天星采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459