Large-scale data classification based on the integrated fusion of fuzzy learning and graph neural network

人工智能 计算机科学 机器学习 深度学习 模糊逻辑 人工神经网络 保险丝(电气) 神经模糊 图形 模糊控制系统 理论计算机科学 电气工程 工程类
作者
Václav Snåšel,Martin Štěpnička,Varun Ojha,Ponnuthurai Nagaratnam Suganthan,Ruobin Gao,Lingping Kong
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102067-102067 被引量:5
标识
DOI:10.1016/j.inffus.2023.102067
摘要

Deep learning and fuzzy models provide powerful and practical techniques for solving large-scale deep-learning tasks. The fusion technique on deep learning and fuzzy system are generally classified into ensemble and integrated modes and materializes in information fusion, model fusion, and feature fusion. In an ensemble-based fusion, the fuzzy model either acts as an activation function or is operated as a separate process aggregating/preprocessing the information. Some early attempts in the field have successfully fused deep neural networks and fuzzy modeling concepts in ensemble mode. However, no effective attempts were made to fuse fuzzy models as an integrated feature-level fusion learning with graph neural networks (GNNs). This is mainly due to two challenges related to this fusion: (1) the number of fuzzy rules grows exponentially with the number of features that causes computational inefficiency, and (2) the solution space created by this fusion of fuzzy rules becomes complex due to multiple regression relations between inputs and outputs. Additionally, a simple linear regression at the output space would not be sufficient to model deep learning tasks. Therefore, this paper addresses these challenges by proposing a feature-level fusion method to fuse deep learning and fuzzy modeling where the latter technique is for integrated feature learning, called fuzzy forest graph neural network (FuzzyGNN), which creates a fuzzy learning forest fusing the linear graph transformers for deep learning tasks. We conducted experiments on fourteen machine learning datasets to test and validate the efficiency of the proposed FuzzyGNN model. Compared to state-of-the-art methods, our algorithm achieves the best results on four out of five machine learning datasets. The source code will be available at https://github.com/lingping-fuzzy/ and https://github.com/P-N-Suganthan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助文竹采纳,获得10
刚刚
1秒前
丘比特应助冷酷夏烟采纳,获得10
1秒前
2秒前
大个应助小路采纳,获得10
2秒前
4秒前
5秒前
半凡发布了新的文献求助10
5秒前
12345完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
徐徐发布了新的文献求助10
8秒前
123发布了新的文献求助10
9秒前
大桶水果茶完成签到,获得积分10
12秒前
眼睛大的寄容完成签到 ,获得积分10
12秒前
14秒前
14秒前
14秒前
15秒前
张雷应助queer采纳,获得20
15秒前
SYLH应助KaiPing采纳,获得30
15秒前
17秒前
18秒前
18秒前
小路发布了新的文献求助10
19秒前
123完成签到,获得积分10
20秒前
ZzzZzH发布了新的文献求助10
20秒前
21秒前
BYQ发布了新的文献求助10
22秒前
23秒前
fei8047发布了新的文献求助30
23秒前
12345发布了新的文献求助10
23秒前
哈哈哈发布了新的文献求助10
24秒前
26秒前
丘比特应助默默的棒棒糖采纳,获得10
27秒前
烟花应助ZzzZzH采纳,获得10
27秒前
28秒前
平陵发布了新的文献求助10
28秒前
迷途灯光完成签到,获得积分10
28秒前
小丑鱼儿发布了新的文献求助10
29秒前
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182