Large-scale data classification based on the integrated fusion of fuzzy learning and graph neural network

人工智能 计算机科学 机器学习 深度学习 模糊逻辑 人工神经网络 保险丝(电气) 神经模糊 图形 模糊控制系统 理论计算机科学 电气工程 工程类
作者
Václav Snåšel,Martin Štěpnička,Varun Ojha,Ponnuthurai Nagaratnam Suganthan,Ruobin Gao,Lingping Kong
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102067-102067 被引量:5
标识
DOI:10.1016/j.inffus.2023.102067
摘要

Deep learning and fuzzy models provide powerful and practical techniques for solving large-scale deep-learning tasks. The fusion technique on deep learning and fuzzy system are generally classified into ensemble and integrated modes and materializes in information fusion, model fusion, and feature fusion. In an ensemble-based fusion, the fuzzy model either acts as an activation function or is operated as a separate process aggregating/preprocessing the information. Some early attempts in the field have successfully fused deep neural networks and fuzzy modeling concepts in ensemble mode. However, no effective attempts were made to fuse fuzzy models as an integrated feature-level fusion learning with graph neural networks (GNNs). This is mainly due to two challenges related to this fusion: (1) the number of fuzzy rules grows exponentially with the number of features that causes computational inefficiency, and (2) the solution space created by this fusion of fuzzy rules becomes complex due to multiple regression relations between inputs and outputs. Additionally, a simple linear regression at the output space would not be sufficient to model deep learning tasks. Therefore, this paper addresses these challenges by proposing a feature-level fusion method to fuse deep learning and fuzzy modeling where the latter technique is for integrated feature learning, called fuzzy forest graph neural network (FuzzyGNN), which creates a fuzzy learning forest fusing the linear graph transformers for deep learning tasks. We conducted experiments on fourteen machine learning datasets to test and validate the efficiency of the proposed FuzzyGNN model. Compared to state-of-the-art methods, our algorithm achieves the best results on four out of five machine learning datasets. The source code will be available at https://github.com/lingping-fuzzy/ and https://github.com/P-N-Suganthan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助笑点低的碧琴采纳,获得10
刚刚
周杰伦关注了科研通微信公众号
刚刚
诗琪发布了新的文献求助10
刚刚
念初完成签到 ,获得积分10
刚刚
一一二二三三肆完成签到 ,获得积分20
刚刚
可爱的函函应助陈敏采纳,获得20
1秒前
1秒前
2秒前
3秒前
3秒前
Akim应助杨梦茹采纳,获得10
3秒前
OVERLXRD完成签到,获得积分10
4秒前
1234567890完成签到,获得积分10
4秒前
5秒前
流浪小诗人完成签到,获得积分10
5秒前
xzy998发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
科研通AI5应助kingyo采纳,获得10
6秒前
科研通AI6应助WNL采纳,获得10
6秒前
烟花应助陈灿灿采纳,获得10
7秒前
花开hhhhhhh发布了新的文献求助10
7秒前
李健应助秀儿采纳,获得10
7秒前
要减肥的狗完成签到,获得积分10
7秒前
胖胖发布了新的文献求助10
8秒前
mochi发布了新的文献求助10
8秒前
8秒前
1234567890发布了新的文献求助10
8秒前
科研通AI6应助寻凝采纳,获得10
9秒前
12发布了新的文献求助10
9秒前
9秒前
zhao完成签到,获得积分20
10秒前
10秒前
111发布了新的文献求助10
10秒前
秣旎发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835