已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large-scale data classification based on the integrated fusion of fuzzy learning and graph neural network

人工智能 计算机科学 机器学习 深度学习 模糊逻辑 人工神经网络 保险丝(电气) 神经模糊 图形 模糊控制系统 理论计算机科学 电气工程 工程类
作者
Václav Snåšel,Martin Štěpnička,Varun Ojha,Ponnuthurai Nagaratnam Suganthan,Ruobin Gao,Lingping Kong
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102067-102067 被引量:5
标识
DOI:10.1016/j.inffus.2023.102067
摘要

Deep learning and fuzzy models provide powerful and practical techniques for solving large-scale deep-learning tasks. The fusion technique on deep learning and fuzzy system are generally classified into ensemble and integrated modes and materializes in information fusion, model fusion, and feature fusion. In an ensemble-based fusion, the fuzzy model either acts as an activation function or is operated as a separate process aggregating/preprocessing the information. Some early attempts in the field have successfully fused deep neural networks and fuzzy modeling concepts in ensemble mode. However, no effective attempts were made to fuse fuzzy models as an integrated feature-level fusion learning with graph neural networks (GNNs). This is mainly due to two challenges related to this fusion: (1) the number of fuzzy rules grows exponentially with the number of features that causes computational inefficiency, and (2) the solution space created by this fusion of fuzzy rules becomes complex due to multiple regression relations between inputs and outputs. Additionally, a simple linear regression at the output space would not be sufficient to model deep learning tasks. Therefore, this paper addresses these challenges by proposing a feature-level fusion method to fuse deep learning and fuzzy modeling where the latter technique is for integrated feature learning, called fuzzy forest graph neural network (FuzzyGNN), which creates a fuzzy learning forest fusing the linear graph transformers for deep learning tasks. We conducted experiments on fourteen machine learning datasets to test and validate the efficiency of the proposed FuzzyGNN model. Compared to state-of-the-art methods, our algorithm achieves the best results on four out of five machine learning datasets. The source code will be available at https://github.com/lingping-fuzzy/ and https://github.com/P-N-Suganthan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panther完成签到,获得积分10
3秒前
闵凝竹完成签到 ,获得积分0
4秒前
祈愿完成签到 ,获得积分10
7秒前
xyz完成签到 ,获得积分10
8秒前
8秒前
憨憨的跳跳完成签到 ,获得积分10
8秒前
科研通AI2S应助优美紫槐采纳,获得10
9秒前
13秒前
舍得完成签到,获得积分10
17秒前
ray发布了新的文献求助10
19秒前
大方的自行车完成签到,获得积分10
20秒前
xxh完成签到,获得积分10
21秒前
李健应助医研采纳,获得10
21秒前
22秒前
一一完成签到 ,获得积分10
22秒前
22秒前
远山完成签到 ,获得积分10
22秒前
24秒前
xxh发布了新的文献求助10
25秒前
只如初完成签到 ,获得积分10
26秒前
无情的冰香完成签到 ,获得积分10
29秒前
传奇3应助ray采纳,获得10
29秒前
30秒前
32秒前
Jojo完成签到 ,获得积分10
32秒前
orixero应助yuanyuan采纳,获得10
33秒前
赘婿应助背后的机器猫采纳,获得10
33秒前
Yanjiakun发布了新的文献求助30
36秒前
36秒前
小肖完成签到 ,获得积分10
36秒前
37秒前
科研通AI6应助西西采纳,获得10
37秒前
39秒前
杨憨憨发布了新的文献求助10
40秒前
41秒前
括弧发布了新的文献求助10
42秒前
优美紫槐发布了新的文献求助10
42秒前
43秒前
45秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599588
求助须知:如何正确求助?哪些是违规求助? 4685339
关于积分的说明 14838367
捐赠科研通 4669426
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505495
关于科研通互助平台的介绍 1470868